首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   21篇
  国内免费   3篇
测绘学   23篇
大气科学   37篇
地球物理   142篇
地质学   157篇
海洋学   44篇
天文学   167篇
综合类   1篇
自然地理   48篇
  2021年   5篇
  2020年   12篇
  2019年   5篇
  2018年   5篇
  2017年   10篇
  2016年   11篇
  2015年   12篇
  2014年   16篇
  2013年   23篇
  2012年   21篇
  2011年   20篇
  2010年   20篇
  2009年   47篇
  2008年   17篇
  2007年   21篇
  2006年   29篇
  2005年   23篇
  2004年   16篇
  2003年   13篇
  2002年   10篇
  2001年   16篇
  2000年   12篇
  1999年   14篇
  1998年   8篇
  1997年   8篇
  1996年   12篇
  1995年   13篇
  1994年   6篇
  1993年   4篇
  1991年   12篇
  1990年   7篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   12篇
  1984年   10篇
  1983年   13篇
  1982年   4篇
  1981年   10篇
  1980年   8篇
  1979年   8篇
  1978年   10篇
  1977年   11篇
  1976年   10篇
  1975年   15篇
  1974年   11篇
  1973年   8篇
  1971年   4篇
  1970年   3篇
排序方式: 共有619条查询结果,搜索用时 31 毫秒
11.
Coal seams and culm banks associated with mine fires in the anthracite region of eastern Pennsylvania have been burning for decades. Many of the fires may have ignited by spontaneous combustion or by the burning of trash. Minerals associated with the combustion of anthracite form by the condensation of gas exhaled through surficial gas vents or anthracite smokers. A Pressure-Temperature (P-T) stability diagram is constructed for the condensation of orthorhombic sulfur from anthracite gas using Thermodynamic Loop Analysis (TL analysis). This method of analyzing chemical systems incorporates Kirchhoff's Law into a four step procedure structured around a closed thermodynamic cycle or thermodynamic loop. The four steps, referred to us The Four S S of Thermodynamic Loop Analysis, include: (1) Set Up—graphical characterization of the problem. (2) Sum—the application of thermodynamic principles. (3) Substitute—the use of materials data available from the literature, and (4) Solve—computation of one or more variables. The example presented demonstrates that thermodynamic loops can incorporate any number of polymorphic phase transformations. In addition, thermodynamic loop analysis is applicable to any geologic process involving the condensation of minerals from a gas. The stability diagram derived by TL analysis may have applicability in monitoring the release of sulfur gas into the atmosphere.  相似文献   
12.
The surface compositions of 110 asteroids are analyzed from statistically representative data sets of polarimetry as a function of phase angle, broad-band radiometry near 10 and 20 μm, and visible and near-infrared spectrophotometry. A comparison of albedos and diameters determined by polarimetry and radiometry shows that a modest upward revision of the radiometric albedo scale is needed and that a single law relating the slope of the polarization-phase curve to geometric albedo may not hold for very dark asteroids. We present reliable adopted albedos and diameters for 56 objects. Roughdi ameters for 52 additional objects are obtained from spectrophotometry using a correlation between albedo and color. Corrections for sampling bias permit investigation of asteroid compositions as a function of diameter, orbit, and other parameters.More than 90% of the minor planets fall into two broad compositional groups, defined by several optical parameters, designated by the symbols C and S. Comparisons with meteorite spectral albedo curves suggest that the two groups are compositionally similar to carbonaceous and stony-metallic meteorites, respectively. C-type asteroids predominate in the belt, especially in the outer half. An unusual distribution of compositions is found between 2.77 and 3.0 AU. Many S-type objects have diameters of 100–200 km; C-type objects are much more common at both larger and smaller sizes. Vesta is unique, being apparently the only differentiated asteroid remaining intact in the belt. The largest C-type objects are compositionally distinct from smaller ones and possibly are metamorphosed. We sketch some implications for meteoritics and for the early history of the solar system and point to the need for further systematic sampling of smaller and fainter objects by these three observational techniques.  相似文献   
13.
Material is ejected from impact craters in ballastic trajectories; it impacts first near the crater rim and then at progressively greater ranges. Ejecta from craters smaller than approximately 1 km is laid predominantly on top of the surrounding surface. With increasing crater size, however, more and more surrounding surface will be penetrated by secondary cratering action and these preexisting materials will be mixed with primary crater ejecta. Ejecta from large craters and especially basin forming events not only excavate preexisting, local materials, but also are capable of moving large amounts of material away from the crater. Thus mixing and lateral transport give rise to continuous deposits that contain materials from within and outside the primary crater. As a consequence ejecta of basins and large highland craters have eroded and mixed highland materials throughout geologic time and deposited them in depressions inside and between older crater structures.Because lunar mare surfaces contain few large craters, the mare regolith is built up by successive layers of predominantly primary ejecta. In contrast, the lunar highlands are dominated by the effects of large scale craters formed early in lunar history. These effects lead to thick fragmental deposits which are a mixture of primary crater material and local components. These deposits may also properly be named regolith though the term has been traditionally applied only to the relatively thin fine grained surficial deposit on mare and highland terranes generated during the past few billion year. We believe that the surficial highland regolith - generated over long periods of time - rests on massive fragmental units that have been produced during the early lunar history.  相似文献   
14.
In the Tampa Bay region of Florida, extreme levels of annual and seasonal rainfall are often associated with tropical cyclones and strong El Niño episodes. We used stepwise multiple regression models to describe associations between annual and seasonal rainfall levels and annual, bay-segment mean water clarity (as Secchi depth [m]), chlorophylla (μg I?1), color (pcu), and turbidity (ntu) over a 20-yr period (1985–2004) during which estimated nutrient loadings have been dominated by non-point sources. For most bay segments, variations in annual mean water clarity were associated with variations in chlorophylla concentrations, which were associated in turn with annual or seasonal rainfall. In two bay segments these associations with annual rainfall were superimposed on significant long-term declining trends in chlorophylla. Color was significantly associated with annual rainfall in all bay segments, and in one segment variations in color were the best predictors of variations in water clarity. Turbidity showed a declining trend over time in all bay segments and no association with annual rainfall, and was significantly associated with variations in water clarity in only one bay segment. While chlorophylla, color, and turbidity a affected water clarity to varying degrees, the effects of extreme rainfall events (El Niño events in 1998 and 2003, and multiple tropical cyclone events in 2004) on water clarity were relatively short-lived, persisting for periods of months rather than years. During the 20-yr period addressed in these analyses, declining temporal trends in chlorophylla and turbidity, produced in part by a long-term watershed management program that has focused on curtailing annual loadings of nitrogen and other pollutants, may have helped to prevent the bay as a whole from responding more adversely to the high rainfall periods that occurred in 1998 and 2003–2004.  相似文献   
15.
Along a 28 km reach of the Klip River, eastern Free State, South Africa, mud- and sand-dominated meanders have developed in close proximity within a floodplain wetland up to 1.5 km wide, providing an unusual opportunity to compare their characteristics under similar hydrological conditions. Throughout the reach, the channel bed is grounded on sandstone/shale bedrock although the banks are alluvial, and most river activity occurs during summer high flows. The reach can be divided into three geomorphological zones: Zone 1 (0–11 km), a muddy proximal part with a single meandering channel (w/d < 10) and near-permanent standing water in oxbows and backswamps; Zone 2 (11–17.5 km), a transitional mud-to-sand part with one main channel (w/d  20–30), a number of sinuous palaeochannels and oxbows, and only limited standing water; and Zone 3 (17.5–28 km), a sandy distal part with a single meandering channel (w/d  15–30), scroll bars and oxbows, and little standing water. Each zone also has a distinctive sedimentology: Zone 1 is characterised by an  3–4 m thick succession of basal sand and minor granules overlain by dominantly muddy sediment deposited primarily by oblique accretion in meander bends; Zone 2 is characterised by < 4 m of interbedded sand and mud deposited primarily by lateral point-bar accretion, although a history of avulsions also attests to the importance of abandoned-channel accretion; and Zone 3 is characterised by < 3 m of dominantly sand deposited primarily by lateral point-bar accretion. This unusual downstream sediment coarsening trend, and the associated changes in channel and floodplain character, are independent of sediment inputs from tributaries, and result from a downstream increase in bankfull unit stream power from < 3.5 W m− 2 (Zone 1) to  4–10 W m− 2 (Zone 3). Mud is deposited primarily in low-energy Zone 1 but is conveyed in suspension more effectively through higher energy Zones 2 and 3, only forming drapes over sandy lateral accretion deposits during waning flood stages. The downstream increase in unit stream power is controlled in part by a slight downstream increase in floodplain gradient that may be related to a subtle variation in the erosional resistance of the bedrock underlying the channel bed. These findings add to previous work on meandering rivers by demonstrating that mud-dominated meanders can occur in long-term erosional settings where the channel bed is grounded on bedrock, and that downstream fining trends may be reversed locally.  相似文献   
16.
The Archean Shawmere anorthosite lies within the granulite facies portion of the Kapuskasing Structural Zone (KSZ), Ontario, and is crosscut by numerous linear alteration veins containing calcite + quartz ± dolomite ± zoisite ± clinozoisite ± margarite ±paragonite ± chlorite. These veins roughly parallel the trend of the Ivanhoe Lake Cataclastic Zone. Equilibria involving clinozoisite + margarite + quartz ± calcite ± plagioclase show that the vein minerals were stable at T < 600 °C, XCO2 < 0.4 at P ≈ 6 kbar. The stabilities of margarite and paragonite in equilibrium with quartz are also consistent with T < 600 °C and XCO2 < 0.4 at 6 kbar. Additional assemblages consisting of calcite + clinochlore + quartz + talc + margarite indicate T < 500 °C with XCO2 > 0.9. Thus, vein formation, while clearly retrograde, spanned a range of temperatures, and fluid compositions evolved from H2O-rich to CO2-rich. The calcite in the retrograde veins has δ18O values that range from 8.4 to 11.2‰ (average = +9.7 ± 0.9‰) and δ13C values that range from −3.9 to −1.6‰ (average = −3.1 ± 0.6‰). These values indicate that the fluids from which calcite precipitated underwent extensive exchange with the anorthosite and other crustal lithologies. The fluids may have been initially derived either from devolatilization of metamorphic rocks or crystallization of igneous rocks in the adjacent Abitibi subprovince. Vein quartz contains CO2-rich fluid inclusions (final melting T = −57.0 to −58.7 °C) that range in size from 5 to 17 μm. Measured homogenization temperatures (T h) range from −44.0 to 14.5 °C, however for most inclusions (46 of S1), T h = −44.0 to −21.1 °C (ρCO2 ≈ 1.13 to 1.05 g/cm3). At 400 to 600 °C, these densities correspond to pressures of 3.5 to 7 kbar, which is the best estimate of pressures of vein formation. It has been argued that some high density CO2-rich fluid inclusions found in the KSZ were formed during peak metamorphism and thus document the presence of a CO2-rich fluid during peak granulite facies metamorphism (Rudnick et al. 1984). The association of high density CO2-rich fluid inclusions with clearly retrograde veins documents the formation of similar composition and density inclusions after the peak of metamorphism. Thus, the coincidence of entrapment pressures calculated from fluid inclusion density measurements with peak metamorphic pressures alone should not be considered strong evidence for peak metamorphic inclusion entrapment. All fluid inclusion results are consistent with an initially semi-isobaric retrograde PT path. Received: 2 April 1996 / Accepted: 15 November 1996  相似文献   
17.
Whilst all ecosystems must obey the second law of thermodynamics, these physical bounds and controls on ecosystem evolution and development are largely ignored across the ecohydrological literature. To unravel the importance of these underlying restraints on ecosystem form and function, and their power to inform our scientific understanding, we have calculated the entropy budget of a range of peat ecosystems. We hypothesize that less disturbed peatlands are ‘near equilibrium’ with respect to the second law of thermodynamics and thus respond to change by minimizing entropy production. This ‘near equilibrium’ state is best achieved by limiting evaporative losses. Alternatively, peatlands ‘far-from-equilibrium’ respond to a change in energy inputs by maximizing entropy production which is best achieved by increasing evapotranspiration. To test these alternatives this study examined the energy balance time series from seven peatlands across a disturbance gradient. We estimate the entropy budgets for each and determine how a change in net radiation (ΔRn) was transferred to a change in latent heat flux (ΔλE). The study showed that: (i) The transfer of net radiation to latent heat differed significantly between peatlands. One group transferred up to 64% of the change in net radiation to a change in latent heat flux, while the second transferred as little as 27%. (ii) Sites that transferred the most energy to latent heat flux were those that produced the greatest entropy. The study shows that an ecosystem could be ‘near equilibrium’ rather than ‘far from equilibrium’.  相似文献   
18.
The method of obtaining zircon samples affects estimation of the global U-Pb age distribution.Researchers typically collect zircons via convenience sampling and cluster sampling.When using these techniques,weight adjustments proportional to the areas of the sampled regions improve upon unweighted estimates.Here,grid-area and modern sediment methods are used to weight the samples from a new database of 418,967 U-Pb ages.Preliminary tests involve two age models.Model-1 uses the most precise U-Pb ages as the best ages.Model-2 uses the~(206)Pb/~(238)U age as the best age if it is less than a1000 Ma cutoff,otherwise it uses the~(207)Pb/~(206)Pb age as the best age.A correlation analysis between the Model-1 and Model-2 ages indicates nearly identical distributions for both models.However,after applying acceptance criteria to include only the most precise analyses with minimal discordance,a histogram of the rejected samples shows excessive rejection of the Model-2 analyses around the1000 Ma cutoff point.Because of the excessive rejection rate for Model-2,we select Model-1 as the preferred model.After eliminating all rejected samples,the remaining analyses use only Model-1 ages for five rock-type subsets of the database:igneous,meta-igneous,sedimentary,meta-sedimentary,and modern sediments.Next,time-series plots,cross-correlation analyses,and spectral analyses determine the degree of alignment among the time-series and their periodicity.For all rock types,the U-Pb age distributions are similar for ages older than 500 Ma,but align poorly for ages younger than 500 Ma.The similarities(500 Ma)and differences(500 Ma)highlight how reductionism from a detailed database enhances understanding of time-dependent sequences,such as erosion,detrital transport mechanisms,lithification,and metamorphism.Time-series analyses and spectral analyses of the age distributions predominantly indicate a synchronous period-tripling sequence of~91-Myr,~273-Myr,and~819-Myr among the various rock types.  相似文献   
19.
Arsenic is usually associated with sulphide minerals formed in the geothermal environment. However, sulphide minerals are prone to dissolution after contact with meteoric water under surface oxidizing conditions. Secondary precipitates that form from the dissolution of the primary sulfides exert a greater influence on arsenic mobility in the geothermal environment. Fe-hydroxides have very good affinity with dissolved arsenate and are stable under most surface oxidizing conditions. Both amorphous silica directly precipitated from geothermal fluids and possibly a kaolinite alteration can host a small significant amount of arsenic. These silicates are also more stable under a wide range of pH and redox conditions.  相似文献   
20.
Giant ground figures are widespread in the lower Colorado River area of southwestern North America, yet their chronology has remained unconstrained by numerical ages. Thirteen AMS 14C measurements reported here indicate that geoglyphs were made from before ˜A. D. 1200 to before ˜900 B. C. We account for potential contamination from prior organics in weathering rinds. All other potential errors point to 14C dates being minimum-limiting ages for the manufacturing of geoglyphs. Although these ages indicate considerable chronological complexity among geoglyphs, our data are consistent with the linguistic hypothesis that the Yuman people in the desert of southeastern California migrated from Baja California—rather than from the north. These results must, however, be placed under the cloud of uncertainty that hangs over the entire field of AMS dating of rock art: the untested assumption surrounding contemporeneity of organics in a surface context. © 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号