首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
测绘学   1篇
大气科学   7篇
地球物理   2篇
地质学   5篇
海洋学   2篇
天文学   19篇
自然地理   3篇
  2020年   1篇
  2016年   5篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2001年   1篇
  1995年   2篇
  1993年   1篇
  1983年   1篇
  1979年   2篇
  1976年   3篇
  1975年   4篇
  1974年   1篇
  1971年   1篇
排序方式: 共有39条查询结果,搜索用时 365 毫秒
31.
We analyse the fluctuations of the electron density and of the magnetic field in the Earth’s magnetosheath to identify the waves observed below the proton gyrofrequency. We consider two quiet magnetosheath crossings i.e. 2 days characterized by small-amplitude waves, for which the solar wind dynamic pressure was low. On 2 August 1978 the spacecraft were in the outer magnetosheath. We compare the properties of the observed narrow-band waves with those of the unstable linear wave modes calculated for an homogeneous plasma with Maxwellian electron and bi-Maxwellian (anisotropic) proton and alpha particle distributions. The Alfvén ion cyclotron (AIC) mode appears to be dominant in the data, but there are also density fluctuations nearly in phase with the magnetic fluctuations parallel to the magnetic field. Such a phase relation can be explained neither by the presence of a proton or helium AIC mode nor by the presence of a fast mode in a bi-Maxwellian plasma. We invoke the presence of the helium cut-off mode which is marginally stable in a bi-Maxwellian plasma with <alpha> particles: the observed phase relation could be due to a hybrid mode (proton AIC + helium cut-off) generated by a non-Maxwellian or a non-gyrotropic part of the ion distribution functions in the upstream magnetosheath. On 2 September 1981 the properties of the fluctuations observed in the middle of the magnetosheath can be explained by pure AIC waves generated by protons which have reached a bi-Maxwellian equilibrium. For a given wave mode, the phase difference between B \Vert and the density is sensitive to the shape of the ion and electron distribution functions: it can be a diagnosis tool for natural and simulated plasmas.  相似文献   
32.
33.
Helium abundance variations in the solar wind have been studied using data obtained with Los Alamos plasma instrumentation on IMP 6, 7, and 8 from 1971 through 1978. For the first time, average flow characteristics have been determined as a function of helium abundance, A(He). Low and average values of A(He) are each preferentially identified with a different characteristic plasma ‘state’ these correspond to what have previously been recognized as the signatures of interplanetary magnetic field polarity reversals and high speed streams, respectively. Helium enhancements at 1 AU also can be identified with a characteristic plasma state, which includes high magnetic field intensity and low proton temperature. This is further evidence that such enhancements are a signal of coronal transient mass ejections. Long-term averages of A(He) at least partially reflect the relative frequency with which coronal streamers, holes, and transients extend their influence into the ecliptic plane at 1 AU. As a result, there is a real and pronounced solar cycle variation of solar wind H(He).  相似文献   
34.
35.
Coronal mass ejection transients observed with the white light coronagraph on Skylab are found to be associated with several other forms of solar activity. There is a strong correlation between such mass ejection transients and chromospheric H activity, with three-quarters of the transients apparently originating in or near active regions. We infer that 40% of transients are associated with flares, 50% are associated with eruptive prominences solely (without flares), and more than 70% are associated with eruptive prominences or filament disappearances (with or without flares). Nine of ten flares which displayed apparent mass ejections of H-emitting material from the flare site could be associated with coronal transients. Within each class of activity, the more energetic events are more likely to be associated with an observable mass ejection.Now at Los Alamos Scientific Laboratories, Los Alamos, NM., U.S.A.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
36.
It has recently been suggested that the large scale structure of the interplanetary magnetic field can be deduced solely from solar wind speed measurements. Here it is emphasized that, in addition to speed measurements, direct measurements of the interplanetary field and indirect diagnostics such as measurements of the solar wind kinetic temperature and galactic and solar energetic particle modulations and anisotropics are required to distinguish between open and closed magnetic structures in the solar wind.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
37.
An attempt to determine the radiance of forward scattered sunlight from particles in lunar libration regions was made with the white light coronagraph on Skylab. The libration regions could not be distinguished against the solar K + F coronal background; an upper limit to the libration cloud radiance is determined to be 2·5 × 10?11B?, where B? is the mean radiance of the solar disk. Employing a model of the particle composition and size distribution which has been proposed for the interplanetary medium, we determine upper limits for the density enhancements in the libration region from the upper limit of the forward scattered radiance presented herein. Similarly, the actual spatial density enhancement is calculated using the earlier observations of the libration region backscattered radiance (Roach, 1975). Enhancements of a factor of 102–103 are thus determined, depending upon material composition and size distribution used. By combining the forward and backscatter observations, it is possible to eliminate from consideration clouds whose power law particle size distribution exponent k is 2·5 and complex index of refraction m is 1·33?0.05i and 1·50?0.05i (i.e. absorbing ice and quartz particles, respectively). Finally, the radiance contrast of a possible model libration cloud is calculated with respect to the K- and F-corona/zodiaal light background and is shown to be a maximum in the vicinity of solar elongation angle ~30 deg.  相似文献   
38.
The speeds of coronal mass ejection events   总被引:2,自引:0,他引:2  
The outward speeds of mass ejection events observed with the white light coronagraph experiment on Skylab varied over a range extending from less than 100 km s–1 to greater than 1200 km s–1. For all events the average speed within the field of view of the experiment (1.75 to 6 solar radii) was 470 km s–1. Typically, flare associated events (Importance 1 or greater) traveled faster (775 km s–1) than events associated with eruptive prominences (330 km s–1); no flare associated event had a speed less than 360 km s–1, and only one eruptive prominence associated event had a speed greater than 600 km s–1. Speeds versus height profiles for a limited number of events indicate that the leading edges of the ejecta move outward with constant or increasing speeds.Metric wavelength type II and IV radio bursts are associated only with events moving faster than about 400 km s–1; all but two events moving faster than 500 km –1 produced either a type II or IV radio burst or both. This suggests that the characteristic speed with which MHD signals propagate in the lower (1.1 to 3 solar radii) corona, where metric wavelength bursts are generated, is about 400 to 500 km s–1. The fact that the fastest mass ejection events are almost always associated with flares and with metric wavelength type II and IV radio bursts explains why major shock wave disturbances in the solar wind at 1 AU are most often associated with these forms of solar activity rather than with eruptive prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
39.
The paucity of modern pollen-rain data from Amazonia constitutes a significant barrier to understanding the Late Quaternary vegetation history of this globally important tropical forest region. Here, we present the first modern pollen-rain data for tall terra firme moist evergreen Amazon forest, collected between 1999 and 2001 from artificial pollen traps within a 500 × 20 m permanent study plot (14°34′50″S, 60°49′48″W) in Noel Kempff Mercado National Park (NE Bolivia). Spearman's rank correlations were performed to assess the extent of spatial and inter-annual variability in the pollen rain, whilst statistically distinctive taxa were identified using Principal Components Analysis (PCA). Comparisons with the floristic and basal area data of the plot (stems ≥10 cm d.b.h.) enabled the degree to which taxa are over/under-represented in the pollen rain to be assessed (using R-rel values). Moraceae/Urticaceae dominates the pollen rain (64% median abundance) and is also an important constituent of the vegetation, accounting for 16% of stems ≥10 cm d.b.h. and ca. 11% of the total basal area. Other important pollen taxa are Arecaceae (cf. Euterpe), Melastomataceae/Combretaceae, Cecropia, Didymopanax, Celtis, and Alchornea. However, 75% of stems and 67% of the total basal area of the plot ≥10 cm d.b.h. belong to species which are unidentified in the pollen rain, the most important of which are Phenakospermum guianensis (a banana-like herb) and the key canopy-emergent trees, Erisma uncinatum and Qualea paraensis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号