首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   4篇
测绘学   3篇
大气科学   5篇
地球物理   15篇
地质学   3篇
海洋学   1篇
天文学   76篇
自然地理   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2011年   1篇
  2010年   4篇
  2007年   2篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   6篇
  1971年   2篇
  1970年   4篇
  1969年   5篇
  1968年   2篇
  1967年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
11.
Harold Zirin 《Solar physics》1987,110(1):101-107
We discuss the weak solar magnetic fields as studied with the BBSO videomagnetograph (VMG). By weak fields we mean those outside active and unipolar regions. These are found everywhere on the Sun, even where there never have been sunspots. These fields consist of the network and intranetwork (IN) elements. The former move slowly and live a day or more; the latter move rapidly (typically 300 m s–1) and live only hours. To all levels of sensitivity the flux is concentrated in discrete elements, and the background field has not been detected. The smallest detectable elements at present are 1016 Mx. The IN elements emerge in bipolar form but appear to flow in a random pattern rather than to the network edges; however, any expanding network element is constrained by geometry to move toward the edges.Because of the great number and short lifetime of the IN elements the total flux emerging in that form exceeds that emerging in the ER by two orders of magnitude and the flux in sunspots, by a factor 104. However, the flux separation is small and there is no contribution to the overall field. In contrast with our earlier results, merging of IN fields is more important than the ephemeral regions as a source of new network elements.The conjecture that all solar magnetic fields are intrinsically strong is discussed and evidence pro and con presented. For the IN fields the evidence suggests they cannot exceed 100 G. For the network fields there is evidence on either side.Reconnection and merging of magnetic fields takes place continually in the conditions studied.Because there is a steady state distribution, the amout of new elements created by merging or emergence must balance that destroyed by reconnection or fission and diffusion of the stronger elements.Solar Cycle Workshop Paper.  相似文献   
12.
Active regions     
H. Zirin 《Solar physics》1970,14(2):328-341
A summary of data on the occurrence of flares and the development of active regions, based on cinematographic data is given. It is shown that flare frequency is determined by the orientation of the magnetic axis relative to the direction of solar rotation and the morphology of the magnetic field as seen in H. In particular, flares are most numerous in simple round spots with reversed polarity nearby, although they may also be frequent in complex spots with polarity reversal.Important solar active regions are shown to evolve principally along two lines; typically they appear as bright regions with loops and grow rapidly to stable bipolar magnetic form. Important activity will occur as the result of later growth of following polarity ahead of the main spots, or some other source of reversal. However, some groups appear as reversed polarity regions and grow rapidly to a level of extreme activity.A series of papers giving case histories is promised.  相似文献   
13.
14.
The risk that benzene and toluene from spills of gasoline will impact drinking water wells is largely controlled by the natural anaerobic biodegradation of benzene and toluene. Benzene and toluene, as well as ethanol and other biofuels, are degraded under anaerobic conditions to the same pool of degradation products. Biodegradation of biofuels may produce concentrations of degradation products that make the thermodynamics for degradation of benzene and toluene infeasible under methanogenic conditions and produce larger plumes of benzene and toluene. This study evaluated the concentrations of fuel alcohols that are necessary to inhibit the anaerobic degradation of benzene and toluene under methanogenic conditions. At two ethanol spill sites, concentrations of ethanol greater ≥42 mg/L inhibited the anaerobic degradation of toluene. The pH and concentrations of acetate, dissolved inorganic carbon, and molecular hydrogen were used to calculate the Gibbs free energy for the biodegradation of toluene. In general, the anaerobic biodegradation of toluene was not thermodynamically feasible in water with ≥42 mg/L ethanol. In a microcosm study, when the concentrations of ethanol were ≥14 mg/L or the concentrations of n‐butanol were ≥16 mg/L, the biodegradation of the alcohols consistently produced concentrations of hydrogen, dissolved inorganic carbon, and acetate that would preclude natural anaerobic biodegradation of benzene and toluene by syntrophic organisms. In contrast, iso‐butanol and n‐propanol only occasionally produced conditions that would preclude the biodegradation of benzene and toluene.  相似文献   
15.
Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy’s law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.  相似文献   
16.
Lee  Jeongwoo  Chae  J.-C.  Yun  H. S.  Zirin  H. 《Solar physics》1997,171(2):269-282
We report new properties of solar magnetic fields in a quiet region as found from their magnetic power spectra. The power spectra of network and intranetwork fields (non-network fields) are separately calculated from a Big Bear magnetogram obtained with moderately high spatial resolution of 1.5 arc sec and a high sensitivity reaching 2 Mx cm-2. The effect of seeing on the power spectrum has been corrected using Fried's (1966) Modulation Transfer Function with the seeing parameter determined in our previous analysis of the magnetogram. As a result, it is found that the two-dimensional power spectra of network and non-network fields appear in a form: ( 1) -1 and ( 1) -3.5. Here 0 0.47 Mm-1 for network fields and 0 0.69 Mm-1 for non-network fields, the latter of which corresponds to the size of mesogranulation; 1 3.0 Mm-1 for both, which is about the size of a large granule. The network field spectrum below 0 appears nearly flat, whereas that of non-network fields instead decreases towards lower wave numbers as ( ) 1.3. The turnover behavior of magnetic field spectra around 1 coincides with that found for the velocity power spectrum, which may justify the kinetic approach taken in previous theoretical studies of the solar magnetic power spectra.  相似文献   
17.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   
18.
An excellent high-resolution movie in the green continuum was produced by shift-and-add treatment of two 60-min videotapes obtained at the Big Bear Solar Observatory. We have studied the digitized images by direct measurement, cross-correlation techniques, and correlation tracking. The seeing-limited resolution was about 0.3 arc sec.While the cross-correlation lifetime for granules is about five minutes, we find that actually tracking the growth and decay of a granule gives lifetimes from 10 to 22 minutes, the longest lifetimes pertaining to the largest granules. The longer lifetime comes from tracking the granule while it undergoes large changes in size and shape, while the cross-correlation lifetime is just the time in which it grows by a factor two. All the granules followed began as small elements, grew to some size, and either faded (88%), exploded (2%) or were hit by an exploding granule (10%). The major variation in granule structure appears to be due to substantial variations in the dark lanes, which often double in width.The granulation shows the typical exploding granule behavior; we find the probability that any granule will be affected by an exploding granule during its lifetime to be 10%. We also observed a larger scale explosion covering about 10 granules. This explosion was marked by rapid (1 km s–1) outward flux of the granules.We tracked the development of six small pores, one of which could be followed for two hours. The latter showed four maxima of absorption separated by about 30 min each, virtually disappearing in between. Another was observed to form in about 20 min, but no changes occur in less than granule lifetime.We confirm the inflow in penumbral fibrils observed by Muller. The inflow velocity is about 0.5 km s–1, and all bright spots disappear into the umbra. The inflow which affects bright and dark features in the penumbral fibrils, is also observed in the smaller spots. We surmise that the Evershed flow is limited to the areas between the bright fibrils. We confirm granular outflow outside the penumbra.  相似文献   
19.
Zhang  Jun  Lin  Ganghua  Wang  Jingxiu  Wang  Haimin  Zirin  Harold 《Solar physics》1998,178(2):245-250
Using a 10-hour time sequence of very deep magnetograms of Big Bear Solar Observatory, we have studied the lifetime of Intranetwork Magnetic Elements for the first time. The analysis reveals the following results:(1) The lifetime of intranetwork elements ranges from 0.2 hr to 7.5 hr with the mean of 2.1 hr. There appears to be a quasi-linear dependence of the lifetime on the total flux of elements. (2) Most intranetwork elements appear as a cluster of mixed polarities from an emergence center somewhere within the network boundary and are destroyed by three mechanisms: merging with intranetwork or network elements of the same polarity, cancellation of opposite polarity elements, or separation and disappearance at the position where they appear. (3) We estimate that the total energy released from the recycling of IN elements isinebreak1.6 × 1028 ergs s-1, which seems to be comparable to the energy required to heat the corona.  相似文献   
20.
Spectroscopic measurements of the strength and direction of transverse magnetic fields in six -spots are presented. The field direction is determined by the relative strength of the - and -components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号