首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   4篇
大气科学   12篇
地球物理   11篇
地质学   12篇
海洋学   4篇
天文学   4篇
自然地理   2篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
排序方式: 共有45条查询结果,搜索用时 253 毫秒
21.
22.
The Baltic Sea ecosystem has suffered from a heavy pollutant load for more than three decades. Persistent organic pollutants (POPs) and heavy metals have been of most concern due to their persistence and toxic properties. Ringed seals (Phoca hispida baltica) and grey seals (Halichoerus grypus) living in the Baltic Sea have been suffering from pathological impairments, including reproductive disturbances, which have resulted in a depressed reproductive capacity. We investigated several biochemical parameters as potential biomarkers for exposure to and effects of the contaminant load in the Baltic seals. Seals from less polluted areas were used as reference material in terms of the pollution load. In both Baltic seal populations, the levels of some biochemical parameters diverged from those in the reference seals, and some of these showed a clear correlation with the individual contaminant load. Of the potential bioindicators, we propose cytochrome P4501A activity and vitamin E levels, in blubber or plasma, as exposure biomarkers for polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT) in both species. The arylhydrocarbon receptor-mediated chemical-activated luciferase gene expression (CALUX) response reflects the whole PCB and DDT burden in ringed seals. Retinyl palmitate (vitamin A) levels showed a negative correlation with the individual POP load, and is proposed as potential effect biomarkers for the depletion of the vitamin A stores. As the nutritional levels of both vitamin A and E have an impact on the vitamin levels in the seals, more information on the dietary vitamin levels is needed before any conclusions can be drawn. As the relationship between biochemical parameters and contaminants varied between the two species, species-specific characteristics has to be considered when monitoring the health status and possible toxic effects of the contaminant load in ringed and grey seals.  相似文献   
23.
The more humid, warmer weather pattern predicted for the future is expected to increase the windthrow risk of trees through reduced tree anchorage due to a decrease in soil freezing between late autumn and early spring, i.e during the most windy months of the year. In this context, the present study aimed at calculating how a potential increase of up to 4°C in mean annual temperature might modify the duration of soil frost and the depth of frozen soil in forests and consequently increase the risk of windthrow. The risk was evaluated by combining the simulated critical windspeeds needed to uproot Scots pines (Pinus sylvestris L.) under unfrozen soil conditions with the possible change in the frequency of these winds during the unfrozen period. The evaluation of the impacts of elevated temperature on the frequency of these winds at times of unfrozen and frozen soil conditions was based on monthly wind speed statistics for the years 1961–1990 (Meteorological Yearbooks of Finland, 1961–1990). Frost simulations in a Scots pine stand growing on a moraine sandy soil (height 20 m, stand density 800 stems ha–1) showed that the duration of soil frost will decrease from 4–5 months to 2–3 months per year in southern Finland and from 5–6 months to 4–5 months in northern Finland given a temperature elevation of 4°C. In addition, it could decrease substantially more in the deeper soil layers (40–60 cm) than near the surface (0–20 cm), particularly in southern Finland. Consequently, tree anchorage may lose much of the additional support gained at present from the frozen soil in winter, making Scots pines more liable to windthrow during winter and spring storms. Critical wind-speed simulations showed mean winds of 11–15 m s–1 to be enough to uproot Scots pines under unfrozen soil conditions, i.e. especially slender trees with a high height to breast height diameter ratio (taper of 1:120 and 1:100). In the future, as many as 80% of these mean winds of 11–15 m s–1 would occur during months when the soil is unfrozen in southern Finland, whereas the corresponding proportion at present is about 55%. In northern Finland, the percentage is 40% today and is expected to be 50% in the future. Thus, as the strongest winds usually occur between late autumn and early spring, climate change could increase the loss of standing timber through windthrow, especially in southern Finland.  相似文献   
24.
Miocene strata in the southern Taranaki Basin (STB), up to 3 km thick, provide a distal record of erosion associated with plate boundary deformation in New Zealand. 2D and 3D seismic reflection data tied to drillhole stratigraphy have been used to constrain four main phases of basin development. These are: (a) Early Miocene (22–19 Ma) subsidence, dominantly bathyal water depths and deposition of minor submarine fans along the eastern basin margin. (b) Middle Miocene (19–14 Ma) widespread submarine fan deposition on a bathyal basin floor in the central STB. (c) Rapid Middle–Late Miocene (14–7 Ma) progradation of the shelf break northwards across the STB. (d) Widespread uplift and erosion of the STB during the latest Miocene–Pliocene (7–4.5 Ma). Bathyal water depths and fan deposition in the Early Miocene were influenced by vertical motions on major reverse faults and regional subsidence produced by subduction of the Pacific plate beneath northern New Zealand. Subsequent submarine fan deposition and northward shelf‐break progradation reflect increasing input of terrigenous material, primarily eroded from an uplifting region to the south of the STB. Sedimentation patterns in the STB are consistent with the age and locations of conglomerates deposited in onshore West Coast basins, related to this uplift and erosion. Sediment transport in the West Coast region was mainly parallel to NNE trending active reverse faults, and in the STB was perpendicular to the NE‐SW orientated shelf break, especially from ca. 14–7 Ma, when sedimentation rates exceeded fault‐displacement rates. Increases in sedimentation rates in the STB coincide with regional increases in the rates of shortening that appear to reflect plate boundary‐wide events and have been attributed to, or correlated with, increases in the plate convergence rate. Miocene sedimentation patterns in the STB thus reflect both intra‐basinal deformation and tectonic signals from the wider developing New Zealand plate boundary.  相似文献   
25.
This study assesses hydrodynamic and morphodynamic model sensitivity and functionality in a curved channel. The sensitivity of a depth‐averaged model to user‐defined parameters (grain size, roughness, transverse bed slope effect, transport relations and secondary flow) is tested. According to the sensitivity analysis, grain size, transverse bed slope effect and sediment transport relations are critical to simulated meander bend morphodynamics. The parametrization of grain size has the most remarkable effect: field‐based grain size parametrization is necessary in a successful morphodynamic reconstruction of a meander bend. The roughness parametrization method affects the distribution of flow velocities and therefore also morphodynamics. The combined effect of various parameters needs further research. Two‐dimensional (2D) and three‐dimensional (3D) reconstructions of a natural meander bend during a flood event are assessed against field measurements of acoustic Doppler current profiler and multi‐temporal mobile laser scanning data. The depth‐averaged velocities are simulated satisfactorily (differences from acoustic Doppler current profiler velocities 5–14%) in both 2D and 3D simulations, but the advantage of the 3D hydrodynamic model is unquestionable because of its ability to model vertical and near‐bed flows. The measured and modelled near‐bed flow, however, differed notably from each other's, the reason of which was left open for future research. It was challenging to model flow direction beyond the apex. The 3D flow features, which also affected the distribution of the bed shear stress, seem not to have much effect on the predicted morphodynamics: the 2D and 3D morphodynamic reconstructions over the point bar resembled each other closely. Although common features between the modelled and measured morphological changes were also found, some specific changes that occurred were not evident in the simulation results. Our results show that short‐term, sub‐bend scale morphodynamic processes of a natural meander bend are challenging to model, which implies that they are affected by factors that have been neglected in the simulations. The modelling of short‐term morphodynamics in natural curved channel is a challenge that requires further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
26.
The aim of this study was to estimate the potential impacts of climate change on the spatial patterns of primary production and net carbon sequestration in relation to water availability in Norway spruce (Picea abies) dominated forests throughout Finland (N 60°–N 70°). The Finnish climatic scenarios (FINADAPT) based on the A2 emission scenario were used. According to the results, the changing climate increases the ratio of evapotranspiration to precipitation in southern Finland, while it slightly decreases the ratio in northern Finland, with regionally lower and higher soil water content in the south and north respectively. During the early simulation period of 2000–2030, the primary production and net carbon sequestration are higher under the changing climate in southern Finland, due to a moderate increase in temperature and atmospheric CO2. However, further elevated temperature and soil water stress reduces the primary production and net carbon sequestration from the middle period of 2030–2060 to the final period of 2060–2099, especially in the southernmost region. The opposite occurs in northern Finland, where the changing climate increases the primary production and net carbon sequestration over the 100-year simulation period due to higher water availability. The net carbon sequestration is probably further reduced by the stimulated ecosystem respiration (under climate warming) in southern Finland. The higher carbon loss of the ecosystem respiration probably also offset the increased primary production, resulting in the net carbon sequestration being less sensitive to the changing climate in northern Finland. Our findings suggest that future forest management should carefully consider the region-specific conditions of sites and adaptive practices to climate change for maintained or enhanced forest production and carbon sequestration.  相似文献   
27.
High altitude and latitude findings of subfossil peatland pine trees were unearthed from the region of NW Finnish Lapland and dated by 14C and tree-ring methods. The depositional history of the trees illustrated two distinct peatland pine phases dated to Middle Holocene intervals 4900–4400 and 4100–3400 cal. a BC. It seems evident that both thermal and hydroclimatic fluctuations have played roles of varying importance in the establishment of this pine population and its demise. The presence of these pines, from a site ~60 km north of the coniferous timberline and conditions ~1 °C and 100 degree-days colder than those at the present-day timberline, concurs with previous studies demonstrating the association between the high-latitude summer-temperature cooling and circumpolar timberline retreat since the Middle Holocene due to Milankovitch forcing. On the other hand, the peatland pine recruitment was made possible by drier than present surface conditions during the previously reconstructed Middle Holocene drought anomaly (Hyvärinen-Alhonen event). Our data suggest this event was not continuous but reached its two-phase climax during the peatland pine phases, with an interruption of several centuries with moister surface conditions between 4400 and 4100 cal. a BC. The findings highlight the sensitivity of well-dated peatland tree assemblages in terms of recording past climatic evolution and events and the need for new collections from north and south Fennoscandia and the Baltic region, for more detailed analyses over extended time intervals and regions.  相似文献   
28.
Aircraft observations of the atmospheric boundary layer (ABL) over Arctic sea ice were made during non-stationary conditions of cold-air advection with a cloud edge retreating through the study region. The sea-ice concentration, roughness, and ABL stratification varied in space. In the ABL heat budget, 80% of the Eulerian change in time was explained by cold-air advection and 20% by diabatic heating. With the cloud cover and inflow potential temperature profile prescribed as a function of time, the air temperature and near-surface fluxes of heat and momentum were well simulated by the applied two-dimensional mesoscale model. Model sensitivity tests demonstrated that several factors can be active in generating unstable stratification in the ABL over the Arctic sea ice in March. In this case, the upward sensible heat flux resulted from the combined effect of clouds, leads, and cold-air advection. These three factors interacted non-linearly with each other. From the point of view of ABL temperatures, the lead effect was far less important than the cloud effect, which influenced the temperature profiles via cloud-top radiative cooling and radiative heating of the snow surface. The steady-state simulations demonstrated that under overcast skies the evolution towards a deep, well-mixed ABL may take place through the merging of two mixed layers one related to mostly shear-driven surface mixing and the other to buoyancy-driven top-down mixing due to cloud-top radiative cooling.  相似文献   
29.
30.
We present a series of sensitivity studies conducted using a one-dimensional Mars model (hereafter 1D model) of the University of Helsinki (UH). The reference case was the Pathfinder simulation for the second Martian day. Pathfinder temperatures and new wind speed observations from near the surface were available for validation. The Monin–Obukhov similarity parametrization for surface-layer turbulence was tested with various forms for the stability functions, and compared with the Pathfinder observations. The Dyer–Businger (DB) forms proved appropriate in the highly turbulent daytime Martian boundary layer. An iterative surface-layer treatment was introduced; this did not significantly change the results but showed that the Obukhov length L was about –30 m during daytime and +%5 m during nighttime. The importance of including water vapour and dust in the radiative transfer was tested in the Pathfinder simulations. Water vapour seems to have a significant effect, especially on the nighttime surface temperatures, by increasing the downwelling longwave radiation. Dust acts similarly and has an even greater longwave effect. It also extinguishes solar radiation strongly, thereby damping the surface temperature cycle. The sensitivity of the diurnal surface temperature variation on various physical properties of the soil (regolith) was studied. Thermal inertia and thermal conductivity had the largest effects. The Beagle 2 Lander of the European Space Agency (ESA) landed unsuccessfully on Mars at the end of the year 2003. The selected landing site was in the Northern Hemisphere tropics where seasonal variations are small, and the landing time corresponded roughly to early spring (Ls = 330°). The expected weather conditions at the site were simulated for four approximate Martian months consisting of 60 Martian solar days each. The driving conditions for the simulations were taken from the Mars climate database.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号