首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   625篇
  免费   21篇
  国内免费   7篇
测绘学   38篇
大气科学   84篇
地球物理   104篇
地质学   246篇
海洋学   46篇
天文学   103篇
综合类   4篇
自然地理   28篇
  2021年   7篇
  2020年   5篇
  2018年   25篇
  2017年   20篇
  2016年   22篇
  2015年   16篇
  2014年   19篇
  2013年   38篇
  2012年   22篇
  2011年   35篇
  2010年   20篇
  2009年   43篇
  2008年   27篇
  2007年   30篇
  2006年   32篇
  2005年   27篇
  2004年   17篇
  2003年   25篇
  2002年   23篇
  2001年   23篇
  2000年   17篇
  1999年   14篇
  1998年   10篇
  1997年   16篇
  1996年   2篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1987年   12篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   5篇
  1982年   6篇
  1977年   2篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1969年   2篇
  1950年   1篇
  1948年   2篇
  1925年   1篇
排序方式: 共有653条查询结果,搜索用时 31 毫秒
591.
The principal features of the marine ecosystems in the Barents and Norwegian Seas and some of their responses to climate variations are described. The physical oceanography is dominated by the influx of warm, high-salinity Atlantic Waters from the south and cold, low-salinity waters from the Arctic. Seasonal ice forms in the Barents Sea with maximum coverage typically in March–April. The total mean annual primary production rates are similar in the Barents and Norwegian Seas (80–90 g C m−2), although in the Barents, the production is higher in the Atlantic than in the ice covered Arctic Waters. The zooplankton is dominated by Calanus species, C. finmarchicus in the Atlantic Waters of the Norwegian and Barents Seas, and C. glacialis in the Arctic Waters of the Barents Sea. The fish species in the Norwegian Sea are mostly pelagics such as herring (Clupea harengus) and blue whiting (Micromesistius poutassou), while in the Barents Sea there are both pelagics (capelin (Mallotus villosus Müller), herring, and polar cod (Boreogadus saida Lepechin)) and demersals (cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus)). The latter two species spawn in the Norwegian Sea along the slope edge (haddock) or along the coast (cod) and drift into the Barents Sea. Marine mammals and seabirds, although comprising only a relatively small percentage of the biomass and production in the region, play an important role as consumers of zooplankton and small fish. While top-down control by predators certainly is significant within the two regions, there is also ample evidence of bottom-up control. Climate variability influences the distribution of several fish species, such as cod, herring and blue whiting, with northward shifts during extended warm periods and southward movements during cool periods. Climate-driven increases in primary and secondary production also lead to increased fish production through higher abundance and improved growth rates.  相似文献   
592.
Springtime measurements of NOx, ozone, PAN,J(NO2), and other compounds were made near Ny-Ålesund,Svalbard (78°54N, 11°53E), in 1994 and Poker Flat,Alaska (65°08N, 147°29W), in 1995. At Svalbard medianmixing ratios for PAN and NOx of 237 and 23.7 pptv,respectively, were observed. The median mixing ratios at Poker Flat for PANand NOx were 79.5 and 85.9 pptv, respectively. These data areused to estimate thermal PAN decomposition using several differentapproaches. At Svalbard PAN decomposition was very small, while at PokerFlat up to 30 pptv/h PAN decomposed. At both sites the NOx/PANratio increased with temperature between –10 and 20°C implyingthat PAN decomposition is an important NOx source. In-situozone production was calculated from the measured NO, NO2,O3, J(NO2), and temperature data, using thesteady state assumption Median ozone production was 605 pptv/h at PokerFlat, and one order of magnitude smaller at Svalbard during the daytime.Only at Poker Flat could a direct influence on the diurnal ozone cycle beobserved from in-situ production. These results imply that PAN decompositionis a major source of NOx in the high latitude troposphere, andthat this contributes to the observed spring maximum in surface ozone.  相似文献   
593.
A first experimental study was conducted to determine the equilibrium iron isotope fractionation between pyrrhotite and silicate melt at magmatic conditions. Experiments were performed in an internally heated gas pressure vessel at 500 MPa and temperatures between 840 and 1000 °C for 120-168 h. Three different types of experiments were conducted and after phase separation the iron isotope composition of the run products was measured by MC-ICP-MS. (i) Kinetic experiments using 57Fe-enriched glass and natural pyrrhotite revealed that a close approach to equilibrium is attained already after 48 h. (ii) Isotope exchange experiments—using mixtures of hydrous peralkaline rhyolitic glass powder (∼4 wt% H2O) and natural pyrrhotites (Fe1 − xS) as starting materials— and (iii) crystallisation experiments, in which pyrrhotite was formed by reaction between elemental sulphur and rhyolitic melt, consistently showed that pyrrhotite preferentially incorporates light iron. No temperature dependence of the fractionation factor was found between 840 and 1000 °C, within experimental and analytical precision. An average fractionation factor of Δ 56Fe/54Fepyrrhotite-melt = −0. 35 ± 0.04‰ (2SE, n = 13) was determined for this temperature range. Predictions of Fe isotope fractionation between FeS and ferric iron-dominated silicate minerals are consistent with our experimental results, indicating that the marked contrast in both ligand and redox state of iron control the isotope fractionation between pyrrhotite and silicate melt. Consequently, the fractionation factor determined in this study is representative for the specific Fe2+/ΣFe ratio of our peralkaline rhyolitic melt of 0.38 ± 0.02. At higher Fe2+/ΣFe ratios a smaller fractionation factor is expected. Further investigation on Fe isotope fractionation between other mineral phases and silicate melts is needed, but the presented experimental results already suggest that even at high temperatures resolvable variations in the Fe isotope composition can be generated by equilibrium isotope fractionation in natural magmatic systems.  相似文献   
594.
Within the southern part of the Sierra Pampeanas (the Sierra de San Luis, Argentina), a series of extensive intrusive bodies are regarded to post-date the Famatinian cycle but were emplaced during the Achalian, a period of heterogeneous deformation along crustal scale fault zones. The largest of those is the Las Chacras-Potrerillos batholith that is situated at the northern end of the transpressive, sinistral Guzmán shear zone. This composite pluton exhibits three sub-domains that comprise two granitoid sub-units each: The southern Potrerillos stock (muscovite-bearing red granite and biotite-bearing red granite) and the central (biotite porphyritic granite and giant porphyritic granite) and northern domain (equigranular granite and porphyritic granite) of the Las Chacras stock. The crystallisation ages of the biotite porphyritic granite is around 381 Ma (U/Pb on zircons and Pb/Pb on sphene), while the host rock was already cooled below 350 °C at 420 Ma. Thermal modelling approaches favour a pulsed intrusion with a duration of 1.5 Ma. The emplacement was followed by rapid cooling below the muscovite cooling temperature. Biotite cooling ages in different sub-units reflect either a long-lasting cooling history of approximately 30 Ma (which is supported by the modelling) or a reheating effect at around 350 Ma. Devonian-age determinations on the fault rocks and granitoids point to a syn-tectonic emplacement of the batholith. The pluton is interpreted to be positioned at the crossover of sinistral shear zones. The origin of this NNE directed extensional setting in a transpressive regime seems to be related to the transfer of displacement along a secondary set of NNW-trending sinistral faults. The final emplacement is due to a subsequent ballooning of the batholith following the direction of space creation. This model is based on the relative timing of the emplacement sequence and macroscopically visible planar fabrics in the field as well as magnetic fabric data. Our results indicate that the emplacement is syn-kinematic with respect to the Achalian deformation event.  相似文献   
595.
The effect of pressure and composition on the viscosity of both anhydrous and hydrous andesitic melts was studied in the viscosity range of 108 to 1011.5 Pa · s using parallel plate viscometry. The pressure dependence of the viscosity of three synthetic, iron-free liquids (andesite analogs) containing 0.0, 1.06, and 1.96 wt.% H2O, respectively, was measured from 100 to 300 MPa using a high-P-T viscometer. These results, combined with those from Richet et al. (1996), indicate that viscosities of anhydrous andesitic melts are independent of pressure, whereas viscosities of hydrous melts slightly increase with increasing pressure. This trend is consistent with an increased degree of depolymerization in the hydrous melts. Compositional effects on the viscosity were studied by comparing iron-free and iron-bearing compositions with similar degrees of depolymerization. During experiments at atmospheric and at elevated pressures (100 to 300 MPa), the viscosity of iron-bearing anhydrous melts preequilibrated in air continuously increased, and the samples became paramagnetic. Analysis of these samples by transmission electron microscopy showed a homogeneous distribution of crystals (probably magnetite) with sizes in the range of 10 to 50 nm. No significant difference in the volume fractions of crystals was found in samples after annealing for 170 to 830 min at temperatures ranging from 970 to 1122 K. An iron-bearing andesite containing 1.88 wt.% H2O, which was synthesized at intrinsic fO2 conditions in an internally heated pressure vessel, showed a similar viscosity behavior as the anhydrous melts. The continuous increase in viscosity at a constant temperature is attributed to changes of the melt structure due to exsolution of iron-rich phases. By extrapolating the time evolution of viscosity down to the time at which the run temperature was reached, for both the anhydrous (at 1055 K) and the hydrous (at 860 K) iron-bearing andesite, the viscosity is 0.7 log units lower than predicted by the model of Richet et al. (1996). This may be explained by differences in structural properties of Fe2+ and Fe3+ and their substitutes Mg2+, Ca2+, and Al3+, which were used in the analogue composition.The effect of iron redox state on the viscosity of anhydrous, synthetic andesite melts was studied at ambient pressure using a dilatometer. Reduced iron-bearing samples were produced by annealing melts in graphite crucibles in an Ar/CO atmosphere for different run times. In contrast to the oxidized sample, no variation of viscosity with time and no exsolution of iron oxide phases was observed for the most reduced glasses. This indicates that trivalent iron promotes the exsolution of iron oxide in supercooled melts. With decreasing Fe3+/ΣFe ratio from 0.58 to 0.34, the viscosity decreases by ∼1.6 log units in the investigated temperature range between 964 and 1098 K. A more reduced glass with Fe3+/ΣFe = 0.21 showed no additional decrease in viscosity. Our conclusion from these results is that the viscosity of natural melts may be largely overestimated when using data obtained from samples synthesized in air.  相似文献   
596.
597.
A magnetic study was carried out on lacustrine sediments from the Zoigê basin, Tibetan Plateau, in order to obtain a better understanding of palaeoclimatic changes there. Gyromagnetic remanence (GRM) acquisition is unexpectedly observed during static three-axis alternating field (AF) demagnetization in about 20 per cent of a large number of samples. X-ray diffraction (XRD) analysis on a magnetic extract clearly shows that greigite is the dominant magnetic mineral carrier. Scanning electron microscopy (SEM) reveals that the greigite particles are in the grain size range of 200–300  nm, possibly in the single-domain state. Greigite clumps of about 3  μm size are sealed by silicates. Fitting of XRD peaks yields a crystalline coherence length of about 15  nm, indicating that the particles seen in the SEM are polycrystalline.
  GRM intensities of most samples are of the same order as the NRM, while others show much stronger GRM although their magnetic properties are similar. Variation of the demagnetization sequence confirms that GRM is mainly produced perpendicular to the AF direction. The anisotropy direction can be derived from GRM, but more systematic studies are needed for detailed conclusions. An attempt to correct for GRM failed due to high GRM intensities and because smaller GRM acquisition was also found along the demagnetization axis. Behaviours of acquisition and AF demagnetization of GRM are comparable with those of NRM, ARM, IRM, indicating fine grain sizes of remanence carriers.  相似文献   
598.
A short general explanation of tidal forces and tidal effects is given. The influences of Earth tides and ocean tides on the Earth's rotation vector are presented. Today, the theoretical models for periodic variations in the Earth's rotation and in polar motion can be compared with precise measurements done by modern space techniques. Secular changes of the Earth's rotation due to interactions within the Earth-Moon-system are also discussed.  相似文献   
599.
600.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号