首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   8篇
地球物理   23篇
地质学   79篇
海洋学   13篇
天文学   19篇
自然地理   28篇
  2024年   1篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   9篇
  2016年   8篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   6篇
  2011年   10篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   13篇
  2006年   7篇
  2005年   3篇
  2004年   9篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   8篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
161.
A paleolimnological study was undertaken to investigate changes in three Minnesota lakes over the last 100 years and to demonstrate the stratigraphic effects of cultural eutrophication in two of them. The study combined the analysis of the lake sediment from short cores with stratigraphic analyses of pollen, plant macrofossils, mollusks, diatoms and certain other algae, chydorid Cladocera, and Daphnia ephippia.The rise of Ambrosia type pollen (ragweed) marks the onset of interference with the landscape by European man, which can be closely dated. Calculations of sedimentation rates from this base gave reasonable correlations of other stratigraphic events with historical events.Elk Lake is considered “unpolluted” today and was chosen as a control. Man's effects are limited to logging some of the surrounding forest and to the construction of a dam. Small changes in the lake's fauna and flora are demonstrated, showing the sensitivity of the lake to changes in its catchment area.Lake Sallie and St. Clair Lake, in the same watershed as the city of Detroit Lakes, have been affected not only by logging but also by addition of nutrients from agricultural runoff and sewage effluent. Considerable responses by the lake organisms are apparent. In Lake Sallie the changes were gradual, but in St. Clair Lake they were very abrupt because the lake was partially drained at the same time and the water volume was thereby reduced.The merits of such an integrated study, the types of information gained from the analyses of the various fossils, and the wider application of the results are discussed.  相似文献   
162.
The emerging tephrostratigraphy of NW Europe spanning the last termination (ca. 15–9 ka) provides the potential for synchronizing marine, ice‐core and terrestrial records, but is currently compromised by stratigraphic complications, geochemical ambiguity and imprecise age estimates for some layers. Here we present new tephrostratigraphic, radiocarbon and chironomid‐based palaeotemperature data from Abernethy Forest, Scotland, that refine the ages and stratigraphic positions of the Borrobol and Penifiler tephras. The Borrobol Tephra (14.14–13.95 cal ka BP) was deposited in a relatively warm period equated with Greenland Interstadial sub‐stage GI‐1e. The younger Penifiler Tephra (14.09–13.65 cal ka BP) is closely associated with a cold oscillation equated with GI‐1d. We also present evidence for a previously undescribed tephra layer that has a major‐element chemical signature identical to the Vedde Ash. It is associated with the warming trend at the end of the Younger Dryas, and dates between 11.79 and 11.20 cal ka BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
163.
Fossil Trichoptera (caddisfly) remains have been identified and quantitatively recorded in the late-glacial and early-Holocene sediments from Kråkenes Lake, western Norway. The sediment sequence was deposited between 12,300 and 8850 14C BP, covering the Allerød, Younger Dryas, and early-Holocene periods. The first Trichoptera were recorded at 12,000 14C BP, and during the Allerod a diverse assemblage of Limnephilidae taxa developed in the lake. By about 11,400 14C BP the relatively thermophilous Polycentropus flavomaculatus and Limnephilus rhombicus were present, suggesting that the summer water temperature was at least 17 °C. This temperature fell by 5-8 °C at the start of the Younger Dryas, and the thermophilous taxa were replaced within 20-40 14C yrs by Apatania spp., including the arctic-alpine A. zonella, suggesting a maximum summer water temperature of 10-12 °C. The Trichoptera assemblage was impoverished in numbers and in diversity over the next 200 yrs as the severe conditions of the Younger Dryas developed. As soon as temperatures rose and glacial meltwater and silt input ended about 700 14C yrs later, the resident Apatania assemblage expanded immediately, within 10 yrs. About 130 yrs later, thermophilous taxa replaced Apatania, and a much more diverse assemblage than in the Allerod occupied the varied habitats made available by the development of the Holocene lake ecosystem. The 130 yr delay may have been caused by a gradual temperature increase crossing a critical threshold, or by the time taken for thermophilous taxa to migrate from their Younger Dryas refugia.  相似文献   
164.
165.
This paper synthesises the palaeoecological reconstructions, including palaeoclimatic inferences, based on the available fossil record of plants (pollen, macrofossils, mosses, diatoms) and animals (chironomids, Cladocera, Coleoptera, Trichoptera, oribatid mites) in the late-glacial and early-Holocene sediments of Kråkenes Lake, western Norway, with special emphasis on changes in the aquatic ecosystem. New percentage and influx pollen diagrams for selected taxa provide insights into the terrestrial setting. The information from all the proxies is collated in a stratigraphical chart, and the inferred changes in the lake and its catchment are discussed. The individual fossil sequences are summarised by detrended correspondence analysis (DCA), and sample scores on the first DCA axes are plotted against an estimated calendar-year timescale for comparison of the timing and magnitude of changes in assemblage composition. The DCA plots show that the large late-glacial biotic changes were synchronous, and were driven by the overriding forcing factor of temperature. During the early Holocene, however, the changes in different groups were more gradual and were independent of each other, showing that other factors were important and interactive, such as the inwash of dissolved and particulate material from the catchment, the base and nutrient status of the lake-water, and the internal processes of ecosystem succession and sediment accumulation. This multi-disciplinary study, with proxies for changes in the lake and in the catchment, highlights the dependence of lake biota and processes not only on regional climatic changes but also on changes in the lake catchment and on internal processes within the lake. Rates of change for each group are also estimated and compared. The reaction times to the sharp temperature changes at the start and end of the Younger Dryas were very rapid and occurred within a decade of the temperature change. Aquatic organisms tracked the temperature and environmental changes very closely, and are probably the best recorders of late-glacial climatic change in the fossil record.  相似文献   
166.
167.
Coastal ecosystems worldwide face increased nutrient enrichment from shoreline and watershed development and atmospheric pollution. We investigated the response of the faunal community of a small microtidal estuary dominated byRuppia maritima (widgeon grass) in Maine, United States, to increased nitrogen loading using an in situ mesocosm enrichment experiment. Community response was characterized by assessing quantitative shifts in macroinvertebrate community composition and identifying changes in food web structure using stable carbon and nitrogen isotope ratios of producers and consumers. The community was dominated by brackish water invertebrates including midge larvae, oligochaetes, damselfly larvae, amphipods, and ostracods. Experimental nutrient additions resulted in significantly lower densities of herbivorous chironomids and predatory damselflies and greater densities of deposit feeding oligochaetes. Grazing midge larvae (Chironomidae:Dicrotendipes, Cricotopus) consumed epiphytic algae under both natural and enriched conditions. Deposit feedingChironomus was dependent on allochthonous sources of detritus under natural conditions and exhibited a shift to autochthonous sources of detritus under enriched conditions. PredatoryEnallagma primarily consumed grazing chironomids under all but the highest loading conditions. Experimental nutrient loading resulted in an increase in generalist deposit feeders dependent on autochthonous sources of detritus.  相似文献   
168.
169.
Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite, etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO / Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed.  相似文献   
170.
The Carpathian–Pannonian Region contains Neogene to Quaternary magmatic rocks of highly diverse composition (calc-alkaline, shoshonitic and mafic alkalic) that were generated in response to complex microplate tectonics including subduction followed by roll-back, collision, subducted slab break-off, rotations and extension. Major element, trace element and isotopic geochemical data of representative parental lavas and mantle xenoliths suggests that subduction components were preserved in the mantle following the cessation of subduction, and were reactivated by asthenosphere uprise via subduction roll-back, slab detachment, slab-break-off or slab-tearing. Changes in the composition of the mantle through time are evident in the geochemistry, supporting established geodynamic models.Magmatism occurred in a back-arc setting in the Western Carpathians and Pannonian Basin (Western Segment), producing felsic volcaniclastic rocks between 21 to 18 Ma ago, followed by younger felsic and intermediate calc-alkaline lavas (18–8 Ma) and finished with alkalic-mafic basaltic volcanism (10–0.1 Ma). Volcanic rocks become younger in this segment towards the north. Geochemical data for the felsic and calc-alkaline rocks suggest a decrease in the subduction component through time and a change in source from a crustal one, through a mixed crustal/mantle source to a mantle source. Block rotation, subducted roll-back and continental collision triggered partial melting by either delamination and/or asthenosphere upwelling that also generated the younger alkalic-mafic magmatism.In the westernmost East Carpathians (Central Segment) calc-alkaline volcanism was simultaneously spread across ca. 100 km in several lineaments, parallel or perpendicular to the plane of continental collision, from 15 to 9 Ma. Geochemical studies indicate a heterogeneous mantle toward the back-arc with a larger degree of fluid-induced metasomatism, source enrichment and assimilation on moving north-eastward toward the presumed trench. Subduction-related roll-back may have triggered melting, although there may have been a role for back-arc extension and asthenosphere uprise related to slab break-off.Calc-alkaline and adakite-like magmas were erupted in the Apuseni Mountains volcanic area (Interior Segment) from15–9 Ma, without any apparent relationship with the coeval roll-back processes in the front of the orogen. Magmatic activity ended with OIB-like alkali basaltic (2.5 Ma) and shoshonitic magmatism (1.6 Ma). Lithosphere breakup may have been an important process during extreme block rotations (60°) between 14 and 12 Ma, leading to decompressional melting of the lithospheric and asthenospheric sources. Eruption of alkali basalts suggests decompressional melting of an OIB-source asthenosphere. Mixing of asthenospheric melts with melts from the metasomatized lithosphere along an east–west reactivated fault-system could be responsible for the generation of shoshonitic magmas during transtension and attenuation of the lithosphere.Voluminous calc-alkaline magmatism occurred in the Cãlimani-Gurghiu-Harghita volcanic area (South-eastern Segment) between 10 and 3.5 Ma. Activity continued south-eastwards into the South Harghita area, in which activity started (ca. 3.0–0.03 Ma, with contemporaneous eruption of calc-alkaline (some with adakite-like characteristics), shoshonitic and alkali basaltic magmas from 2 to 0.3 Ma. Along arc magma generation was related to progressive break-off of the subducted slab and asthenosphere uprise. For South Harghita, decompressional melting of an OIB-like asthenospheric mantle (producing alkali basalt magmas) coupled with fluid-dominated melting close to the subducted slab (generating adakite-like magmas) and mixing between slab-derived melts and asthenospheric melts (generating shoshonites) is suggested. Break-off and tearing of the subducted slab at shallow levels required explaining this situation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号