首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   11篇
  国内免费   2篇
测绘学   6篇
大气科学   12篇
地球物理   60篇
地质学   60篇
海洋学   33篇
天文学   62篇
综合类   3篇
自然地理   18篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   11篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   11篇
  2011年   11篇
  2010年   17篇
  2009年   18篇
  2008年   20篇
  2007年   14篇
  2006年   15篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1995年   2篇
  1994年   7篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   5篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1955年   1篇
排序方式: 共有254条查询结果,搜索用时 93 毫秒
11.
Polarization anomaly of Love waves caused by lateral heterogeneity   总被引:1,自引:0,他引:1  
We calculate surface waves propagating in a laterally heterogeneous structure beneath the Kuril trench, where significant Love-wave polarization anomalies, called quasi-Love waves, are generated. Since 3-D wave propagation in the two-dimensionally heterogeneous structure can be assumed, we apply the 2.5-D finite difference method to the surface-wave calculations. The calculations show that a velocity contrast of 7 per cent at depths of less than 210 km beneath the Kuril trench cannot generate quasi-Love waves, and that an unlikely contrast of 20 per cent is required to generate clear quasi-Love waves. The possible cause of the quasi-Love waves inferred from previous studies on coupled free oscillations is a lateral variation in azimuthal anisotropy. The lateral variation in azimuthal anisotropy beneath the Kuril trench suggests a change in the mantle flow induced by the subducting slab.  相似文献   
12.
Daisuke Kobayashi 《Icarus》2010,210(1):37-42
The crustal magnetic anomalies on Mars may represent hot spot tracks resulting from lithospheric drift on ancient Mars. As evidence, an analysis of lineation patterns derived from the ΔBr magnetic map is presented. The ΔBr map, largely free of external magnetic field effects, allows excellent detail of the magnetic anomaly pattern, particularly in areas of Mars where the field is relatively weak. Using cluster analysis, we show that the elongated anomalies in the martian magnetic field form concentric small circles (parallels of latitude) about two distinct north pole locations. If these pole locations represent ancient spin axes, then tidal force on the early lithosphere by former satellites in retrograde orbits may have pulled the lithosphere in an east-west direction over hot mantle plumes. With an active martian core dynamo, this may have resulted in the observed magnetic anomaly pattern of concentric small circles. As further evidence, we observe that, of the 15 martian giant impact basins that were possibly formed while the core dynamo was active, seven lie along the equators of our two proposed paleopoles. We also find that four other re-magnetized giant impact basins lie along a great circle about the mean magnetic paleopole of Mars. These 11 impact basins, likely the result of fallen retrograde satellite fragments, indicate that Mars once had moons large enough to cause tidal drag on the early martian lithosphere. The results of this study suggest that the magnetic signatures of this tidal interaction have been preserved to the present day.  相似文献   
13.
We performed two-dimensional spectroscopic observations of the preceding sunspot of NOAA 10905 located off disk center (S8 E36, μ≈0.81) by using the Interferometric BI-dimensional Spectrometer (IBIS) operated at the Dunn Solar Telescope (DST) of the National Solar Observatory, New Mexico. The magnetically insensitive Fe I line at 709.04 nm was scanned in wavelength repetitively at an interval of 37 s to calculate sequences of maps of the line-wing and line-core intensity, and the line-of-sight Doppler velocity at different line depths (3% to 80%). Visual inspection of movies based on speckle reconstructions computed from simultaneous broadband data and the local continuum intensity at 709.04 nm revealed an umbral dot (UD) intruding rapidly from the umbral boundary to the center of the umbra. The apparent motion of this object was particularly fast (1.3 km s−1) when compared to typical UDs. The lifetime and size of the UD was 8.7 min and 240 km, respectively. The rapid UD was visible even in the line-core intensity map of Fe I 709.04 nm and was accompanied by a persistent blueshift of about 0.06 km s−1.  相似文献   
14.
Synthesized mineral powders with particle size of <100 nm are vacuum sintered to obtain highly dense and fine-grained polycrystalline mantle composites: single phase aggregates of forsterite (iron-free), olivine (iron containing), enstatite and diopside; two-phase composites of forsterite + spinel and forsterite + periclase; and, three-phase composites of forsterite + enstatite + diopside. Nano-sized powders of colloidal SiO2 and highly dispersed Mg(OH)2 with particle size of ≤50 nm are used as chemical sources for MgO and SiO2, which are common components for all of the aggregates. These powders are mixed with powders of CaCO3, MgAl2O4, and Fe(CO2CH3)2 to introduce mineral phases of diopside, spinel, and olivine to the aggregates, respectively. To synthesize highly dense composites through pressureless sintering, we find that calcined powders should be composed of particles that have: (1) fully or partially reacted to the desired minerals, (2) a size of <100 nm and (3) less propensity to coalesce. Such calcined powders are cold isostatically pressed and then vacuum sintered. The temperature and duration of the sintering process are tuned to achieve a balance between high density and fine grain size. Highly dense (i.e., porosity ≤1 vol%) polycrystalline mantle mineral composites with grain size of 0.3–1.1 μm are successfully synthesized with this method.  相似文献   
15.
The relationship between mid-latitude tropospheric warming (MLTW) and the tropical sea surface temperatures (SSTs) in June–August (JJA) of 2010 has been investigated using an atmospheric general circulation model forced with the evolving observed SSTs. The simulation results indicate that the SST anomalies (SSTAs) in the equatorial Pacific in JJA 2010, indicating La Niña condition, did not contribute simultaneously to produce the MLTW in JJA 2010, and, instead, the SSTAs in the northern subtropics (the whole latitudinal band between 10°N and 30°N) contributed. However, it is shown by the results that enough magnitude of the atmospheric height anomalies over the northern mid-latitude was not reproduced by the SSTAs over the northern subtropical Indo-western Pacific (IWP) alone or over the northern subtropical Atlantic alone. It implies that both the SSTA over the northern subtropics of IWP and Atlantic were necessary to reproduce the MLTW. The possible role of convective activity for the MLTW is also discussed.  相似文献   
16.
17.
The High-Resolution Coronal Imager (Hi-C) was flown on a NASA sounding rocket on 11 July 2012. The goal of the Hi-C mission was to obtain high-resolution (≈?0.3?–?0.4′′), high-cadence (≈?5 seconds) images of a solar active region to investigate the dynamics of solar coronal structures at small spatial scales. The instrument consists of a normal-incidence telescope with the optics coated with multilayers to reflect a narrow wavelength range around 19.3 nm (including the Fe xii 19.5-nm spectral line) and a 4096×4096 camera with a plate scale of 0.1′′?pixel?1. The target of the Hi-C rocket flight was Active Region 11520. Hi-C obtained 37 full-frame images and 86 partial-frame images during the rocket flight. Analysis of the Hi-C data indicates the corona is structured on scales smaller than currently resolved by existing satellite missions.  相似文献   
18.
19.
Dacitic magma, a mixture of high-temperature (T) aphyric magma and low-T crystal-rich magma, was erupted during the 1991–1995 Mount Unzen eruptive cycle. Here, the crystallization processes of the low-T magma were examined on the basis of melt inclusion analysis and phase relationships. Variation in water content of the melt inclusions (5.1–7.2 wt% H2O) reflected the degassing history of the low-T magma ascending from deeper levels (250 MPa) to a shallow magma chamber (140 MPa). The ascent rate of the low-T magma decreased markedly towards the emplacement level as crystal content increased. Cooling of magma as well as degassing-induced undercooling drove crystallization. With the decreasing ascent rate, degassing-induced undercooling decreased in importance, and cooling became more instrumental in crystallization, causing local and rapid crystallization along the margin of the magma body. Some crystals contain scores of melt inclusions, whereas there are some crystals without any inclusions. This heterogeneous distribution suggests the variation in the crystallization rate within the magma body; it also suggests that cooling was dominant cause for melt entrapment. Numerical calculations of the cooling magma body suggest that cooling caused rapid crystal growth and enhanced melt entrapment once the magma became a crystal-rich mush with evolved interstitial melt. The rhyolitic composition of melt inclusions is consistent with this model.Editorial responsibility: H Shinohara  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号