首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
地球物理   4篇
海洋学   6篇
天文学   30篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   4篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
21.
The precise physical process that triggers solar flares is not currently understood. Here we attempt to capture the signature of this mechanism in solar-image data of various wavelengths and use these signatures to predict flaring activity. We do this by developing an algorithm that i) automatically generates features in 5.5 TB of image data taken by the Solar Dynamics Observatory of the solar photosphere, chromosphere, transition region, and corona during the time period between May 2010 and May 2014, ii) combines these features with other features based on flaring history and a physical understanding of putative flaring processes, and iii) classifies these features to predict whether a solar active region will flare within a time period of \(T\) hours, where \(T = 2 \mbox{ and }24\). Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We find that when optimizing for the True Skill Score (TSS), photospheric vector-magnetic-field data combined with flaring history yields the best performance, and when optimizing for the area under the precision–recall curve, all of the data are helpful. Our model performance yields a TSS of \(0.84 \pm0.03\) and \(0.81 \pm0.03\) in the \(T = 2\)- and 24-hour cases, respectively, and a value of \(0.13 \pm0.07\) and \(0.43 \pm0.08\) for the area under the precision–recall curve in the \(T=2\)- and 24-hour cases, respectively. These relatively high scores are competitive with previous attempts at solar prediction, but our different methodology and extreme care in task design and experimental setup provide an independent confirmation of these results. Given the similar values of algorithm performance across various types of models reported in the literature, we conclude that we can expect a certain baseline predictive capacity using these data. We believe that this is the first attempt to predict solar flares using photospheric vector-magnetic field data as well as multiple wavelengths of image data from the chromosphere, transition region, and corona, and it points the way towards greater data integration across diverse sources in future work.  相似文献   
22.
23.
A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.  相似文献   
24.
Liu  Yang  Xuepu Zhao  Hoeksema  J. Todd 《Solar physics》2004,219(1):39-53
Shutter noise induces a small random shift of the zero point in full-disk magnetograms obtained by the Michelson Doppler Imager (MDI) instrument aboard SOHO. In this paper, we develop a method to remove this offset by fitting the distribution of the magnetic field strength with a Gaussian function (Ulrich et al., 2002). We also discover a systematic error in the five-minute magnetograms that are the sum of five individual magnetograms computed on-board; this error can be removed together with the offset. The mean solar magnetic field and synoptic frames derived from corrected magnetograms show significant improvement. Standard synoptic charts benefit from reduced noise and elimination of systematic errors in the individual magnetograms. This indicates that this correction is effective and necessary.  相似文献   
25.
The three helioseismology instruments aboard SOHO observe solar p modes in velocity (GOLF and MDI) and in intensity (VIRGO and MDI). Time series of two months duration are compared and confirm that the instruments indeed observe the same Sun to a high degree of precision. Power spectra of 108 days are compared showing systematic differences between mode frequencies measured in intensity and in velocity. Data coverage exceeds 97% for all the instruments during this interval. The weighted mean differences (V-I) are −0.1 μHz for l=0, and −0.16 μHz for l=1. The source of this systematic difference may be due to an asymmetry effect that is stronger for modes seen in intensity. Wavelet analysis is also used to compare the shape of the forcing functions. In these data sets nearly all of the variations in mode amplitude are of solar origin. Some implications for structure inversions are discussed.  相似文献   
26.
This study explored the ways in which various factors influence the species compositions, species richness and catch rates of fishes in offshore, deeper waters of the basin and river regions of five estuaries, which are located along ca 400 km of the southern coastline of Western Australia and differ markedly in their physico-chemical characteristics. Gill netting seasonally for two years at sites in the basin and saline lower reaches of the main tributary of the seasonally-open Broke, Irwin and Wilson inlets, the permanently-open Oyster Harbour and the normally-closed Wellstead Estuary yielded 22,329 fishes representing 58 species. Overall, and irrespective of estuary type, the species compositions of the basins and rivers differed markedly. This was attributable to consistently greater abundances of Mugil cephalus, and usually also of Acanthopagrus butcheri, in the rivers of each estuary and to the restriction of a range of species largely to the basins. However, the compositions in the basins of the five estuaries varied markedly, reflecting differences in the extent and duration of the opening of the estuary mouth and/or whether extensive growths of macrophytes were present. Changes in the ichthyofaunal composition of the normally-closed Wellstead Estuary between the first and second years of the study were attributable, in particular, to the movement of two mugilid species into offshore waters as they increased in size. Cyclical changes in ichthyofaunal composition were conspicuous in both regions of the estuary that underwent the most pronounced seasonal variations in environmental conditions. In each estuary, species richness was greater in the basin than river, where salinities were more variable and fell to lower levels and were thus less conducive to the immigration of most marine species. Catch rates were least in Broke Inlet, which had the lowest primary productivity, and were particularly high in Wellstead Estuary, which is highly eutrophic. The results of this study emphasise that ichthyofaunal composition can vary greatly with region (basin vs river) in microtidal estuaries, a finding that is of direct relevance to managers as these systems are becoming increasingly degraded and yet still constitute important nursery areas for certain fish species and often support recreational and commercial fisheries.  相似文献   
27.
Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of solar cycle 21.Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field - Source Surface model. This provides a three - dimensional picture of the heliospheric field evolution during the solar cycle.In this note we announce the publication of UAG Report No. 94, an Atlas containing the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structures of the solar and heliospheric fields, which determine the environment for solar-terrestrial relations and provide the context within which solar activity related events occur, can be approximated from these data.  相似文献   
28.
In order to preserve diversity it is essential to understand how assemblages change across space. Despite this fact, we still know very little about how marine diversity is spatially distributed, especially among lesser‐studied invertebrate taxa. In the present study beta‐diversity patterns of sea urchins, sponges, mushroom corals and larger foraminifera were assessed in the Spermonde Archipelago (Indonesia). Using ordinations we showed that the inshore zone (<5 km offshore), midshore zone (5 < x < 30 km offshore) and distance offshore zone (>30 km offshore) all contained distinct assemblages of sponges and corals, while only foraminifera assemblages from the inshore (<5 km offshore) zone were distinct. There was a significant spatial pattern of community similarity for all taxa surveyed, but this pattern proved to be wholly related to environmental variables for sponges and foraminifera, and primarily for mushroom corals and sea urchins. The lack of a pure spatial component suggests that these taxa may not be dispersal limited within the spatial scales of this study (c. 1600 km2). The analyses of the corals and foraminifera were additionally tested at two spatial scales of sampling. Both taxa were primarily associated with local‐scale environmental variables at the local scale and larger‐scale variables at the larger scale. Mean inter‐plot similarity was also higher and variation lower at the larger scale. The results suggest that substantial variation in similarity can be predicted using simple locally assessed environmental variables combined with remotely sensed parameters.  相似文献   
29.
VIRGO: Experiment for helioseismology and solar irradiance monitoring   总被引:1,自引:0,他引:1  
The scientific objective of the VIRGO experiment (Variability of solar IRradiance and Gravity Oscillations) is to determine the characteristics of pressure and internal gravity oscillations by observing irradiance and radiance variations, to measure the solar total and spectral irradiance and to quantify their variability over periods of days to the duration of the mission. With these data helioseismological methods can be used to probe the solar interior. Certain characteristics of convection and its interaction with magnetic fields, related to, for example, activity, will be studied from the results of the irradiance monitoring and from the comparison of amplitudes and phases of the oscillations as manifest in brightness from VIRGO, in velocity from GOLF, and in both velocity and continuum intensity from SOI/MDI. The VIRGO experiment contains two different active-cavity radiometers for monitoring the solar constant, two three-channel sunphotometers (SPM) for the measurement of the spectral irradiance at 402, 500 and 862 nm, and a low-resolution imager (LOI) with 12 pixels, for the measurement of the radiance distribution over the solar disk at 500 um. In this paper the scientific objectives of VIRGO are presented, the instruments and the data acquisition and control system are described in detail, and their measured performance is given.died 13 October 1994  相似文献   
30.
Vector magnetic field synoptic charts from the Helioseismic and Magnetic Imager (HMI) are now available for each Carrington Rotation (CR) starting from CR 2097 in May 2010. Synoptic charts are produced using 720-second cadence full-disk vector magnetograms remapped to Carrington coordinates. The vector field is derived from the Stokes parameters (\(I, Q, U, V\)) using a Milne–Eddington-based inversion model. The \(180^{\circ}\) azimuth ambiguity is resolved using the minimum energy algorithm for pixels in active regions and for strong-field pixels (the field is greater than about 150 G) in quiet-Sun regions. Three other methods are used for the rest of the pixels: the potential-field method, the radial acute-angle method, and the random method. The vector field synoptic charts computed using these three disambiguation methods are evaluated. The noise in the three components of the vector magnetic field is generally much higher in the potential-field method charts. The component noise levels are significantly different in the radial-acute charts. However, the noise levels in the random-method charts are lower and comparable. The assumptions used in the potential-field and radial-acute methods to disambiguate the weak transverse field introduce bias that propagates differently into the three vector-field components, leading to unreasonable pattern and artifacts, whereas the random method appears not to introduce any systematic bias. The current sheet on the source surface, computed using the potential-field source-surface model applied to random-method charts, agrees with the best solution (the result computed from the synoptic charts with the minimum energy algorithm applied to each and every pixel in the vector magnetograms) much better than the other two. Differences in the synoptic charts determined with the best method and the random method are much smaller than those from the best method and the other two. This comparison indicates that the random method is better for vector field synoptic maps computed from near-central meridian data. The vector field synoptic charts provided by the Joint Science Operations Center (JSOC) are therefore produced with the random method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号