首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   22篇
  国内免费   1篇
测绘学   9篇
大气科学   7篇
地球物理   95篇
地质学   48篇
海洋学   14篇
天文学   30篇
自然地理   4篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   3篇
  2018年   11篇
  2017年   6篇
  2016年   12篇
  2015年   13篇
  2014年   10篇
  2013年   19篇
  2012年   11篇
  2011年   15篇
  2010年   12篇
  2009年   17篇
  2008年   10篇
  2007年   6篇
  2006年   9篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1983年   2篇
  1980年   1篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
61.
A mechanism of horizontal floor response spectra amplification in the vicinity of higher modes' frequencies is investigated. It is demonstrated, by means of a simple two‐degrees‐of‐freedom model, that in the case of unsymmetrical superstructure, such amplification may occur because of the coupling between vertical excitation and horizontal response of the non‐isolated modes. This phenomenon is further illustrated by the results of analyses of a model of a nuclear plant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
62.
In this paper we study the sensitivity of seismically isolated structures to a small variability of the earthquake excitation and of some structural properties with respect to the probability of failure and floor spectra. In particular, the influence of the nonlinear behaviour of the isolated superstructure on the vulnerability and on the floor spectra is investigated by means of a series of Monte Carlo simulations of simple two degrees‐of‐freedom systems. Several types of passive and active isolation systems are examined and three different idealized nonlinear constitutive laws are considered for the superstructure. It is found that, in general, the probability of failure does not depend on the specific cyclic behaviour of the assumed constitutive law and general trends regarding the impact of different isolation devices on vulnerability are established. As for the floor spectra, the influence of moderate nonlinear behaviour of isolated superstructures, with the exception of the case of a non‐dissipative elastic nonlinear law, is negligible, contrary to the case of conventional structures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
63.
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil‐footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking‐isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self‐centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   
64.
Accurate reproduction of time series with diverse frequency characteristics is a central issue in structural testing. This is true not only for simple experimental tests performed by reaction walls or shaking tables but also for more sophisticated ones, such as hybrid testing. Especially in the latter case, where actual feedback from an ongoing test is used in the calculation of the next excitation value, any possible mismatch may be fatal for both the validity of the test and the safety. The objective of this study is to propose a framework for the adaptive inverse control of shaking tables, which succeeds in this matching to a certain degree. By formulating a critical set of design specifications that correspond to safety, implementation, robustness and ease of use, the conducted research results in a design that is based on a modified version of the filtered‐X algorithm with very competitive features. These are the following: (i) default operation in hard real‐time and acceleration mode; (ii) very low hardware requirements; (iii) effective cancelation of the shaking table's dynamics; and (iv) robustness against specimen dynamics. For its practical evaluation, the method is applied to shaking table waveform replication tests under the installation of an approximately linear specimen of sufficiently high mass and complex geometry. The results are promising and suggest further research toward this field, especially in conjunction with hybrid testing, as the method retains certain global applicability attributes and it can be easily extended to other transfer systems, apart from shaking tables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
65.
Current seismic design codes and damage estimation tools neglect the influence of successive events on structures. However, recent earthquakes have demonstrated that structures damaged during an initial event (mainshock) are more vulnerable to severe damage and collapse during a subsequent event (aftershock). This increased vulnerability to damage translates to increased likelihood of loss of use, property, and life. Thus, a reliable risk assessment tool is required that characterizes the risk of the undamaged structure subjected to an initial event and the risk of the damaged structure under subsequent events. In this paper, a framework for development of aftershock fragilities is presented; these aftershock fragilities define the likelihood that a building damaged during a mainshock will exhibit a given damage state following one or more aftershocks. Thus, the framework provides a method for characterizing the risk associated with damage accumulation in the structure. The framework includes the following: (i) creation of a numerical model of the structure; (ii) characterization of building damage states; (iii) generation of a suite of mainshock–aftershocks; (iv) mainshock–aftershock analyses; and (v) development of aftershock fragility curves using probabilistic aftershock demand models, defined as a linear regression of aftershock demand–intensity pairs in a logarithmic space, and damage‐state prediction models. The framework is not limited to a specific structure type but requires numerical models defining structural response and linking structural response with damage. In the current study, non‐ductile RC frames (low‐rise, mid‐rise, and high‐rise) are selected as case studies for the application of the framework. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
66.
The behaviour under seismic loading of inclined piles embedded in two idealized soil profiles, a homogeneous and a non-homogenous “Gibson” soil, is analysed with 3D finite elements. Two structures, modeled as single-degree-of-freedom oscillators, are studied: (1) a tall slender superstructure (H st = 12 m) whose crucial loading is the overturning moment, and (2) a short structure (H st = 1 m) whose crucial loading is the shear force. Three simple two-pile group are studied: (a) one comprising a vertical pile and a pile inclined at 25°, (b) one consisting of two piles symmetrically inclined at 25°, and (c) a group of two vertical piles. The influence of key parameters is analysed and non-dimensional diagrams are presented to illustrate the role of raked piles on pile and structure response. It is shown that this role can be beneficial or detrimental depending on a number of factors, including the slenderness of the superstructure and the type of pile-to-cap connection.  相似文献   
67.
In this paper the question of possible adverse effects of damping in seismic isolation because of higher mode response is investigated by means of simple models with a few degrees of freedom (DOF). In particular the second mode response of a 2 DOF system is examined in detail for both viscous and hysteretic (e.g. friction or elastoplastic) damping devices. Qualitative and approximate quantitative estimates are obtained by neglecting the influence of the modal coupling terms, due to viscous damping or friction forces, on the first mode response. It is shown that additional viscous damping has a diminishing effect on base displacement, storey shear force and floor spectra values in the vicinity of the first mode resonance. However, a significant amplification of the floor spectra values near the higher mode frequencies may occur. In accordance with the results of previous works, compared with the viscous damping case, hysteretic damping amplifies moderately the first storey shear force and significantly the upper storeys shear force. It also results, in a much more pronounced amplification of the floor spectral values than viscous damping, in the vicinity of the higher eigenfrequencies. However, the higher modes' response is milder if a realistic velocity dependence of the friction coefficient is taken into account. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
68.
The dynamic response due to earthquake-induced excitations of multi-storey buildings simulated by a cantilever (with attached concentrated masses) supported on a flexible foundation, is reconsidered when stiffness non-linearities are included. To this end, a suitable non-linear spring-mass device is placed between the ground and the mass of the foundation, which under certain conditions can absorb a significant amount of seismic energy over a large frequency range, thus drastically reducing the seismic response of the foundation. This is achieved by the stiffness non-linearity that gives rise to a localization phenomenon, according to which motions generated by external disturbances remain passively localized close to the point of seismic excitation instead of ‘spreading’ to the entire structure. The implications of these findings to the design of earthquake-resistant structures are discusssed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
69.
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with \(\mbox{H}\upalpha\) observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from \(8\times 10^{4}~\mbox{K}\) to \(6\times 10^{5}~\mbox{K}\). Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by \(\mbox{H}\upalpha\) upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.  相似文献   
70.
This paper presents a three‐dimensional analysis framework, based on the explicit finite element method, for the simulation of reinforced concrete components under cyclic static and dynamic loading. A recently developed triaxial constitutive model for concrete is combined with a material model for reinforcing steel which can account for rupture due to low‐cycle fatigue. The reinforcing bars are represented with geometrically nonlinear beam elements to account for buckling of the reinforcement. The strain penetration effect is also accounted for in the models. The modeling scheme is used in a commercial finite element program and validated with the results of experimental static and dynamic tests on reinforced concrete columns and walls. The analyses are supplemented with a parametric study to investigate the impact of several modeling assumptions on the obtained results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号