首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25174篇
  免费   20篇
  国内免费   69篇
测绘学   723篇
大气科学   1779篇
地球物理   3977篇
地质学   12389篇
海洋学   1593篇
天文学   3961篇
综合类   156篇
自然地理   685篇
  2022年   1篇
  2020年   1篇
  2019年   4篇
  2018年   3340篇
  2017年   3145篇
  2016年   1763篇
  2015年   132篇
  2014年   36篇
  2013年   4篇
  2012年   1207篇
  2011年   2970篇
  2010年   2798篇
  2009年   2848篇
  2008年   2200篇
  2007年   2936篇
  2006年   52篇
  2005年   525篇
  2004年   403篇
  2003年   496篇
  2002年   281篇
  2001年   35篇
  2000年   39篇
  1999年   1篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1981年   14篇
  1980年   21篇
  1976年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Some difficulties in explaining the slow rotation of CP stars are discussed. The most likely hypotheses are (1) a loss of angular momentum involving a magnetic field during “pre-main sequence” evolution and (2) the slow rotation existed from the very start of the creation of these stars. The braking hypothesis is supported by only one property of CP stars— the lower the mass of the star is, the greater the difference between its average rotation velocity vsini and that of normal stars. On the other hand, there is another property— the lower the rotation speeds of CP stars are, the greater their fraction among normal stars. The latter property supports the hypothesis that the lower the initial rotation speed of a star is when it is created, the greater the probability will become chemically peculiar. This property is inherent in chemically peculiar stars both with and without a magnetic field. It is proposed that the cause of the slow rotation of CP stars must be sought in the very earliest phases of their formation, as should the cause of the separation into chemically peculiar magnetic, chemically peculiar nonmagnetic, and normal stars.__________Translated from Astrofizika, Vol. 48, No. 2, pp. 229–245 (May 2005).  相似文献   
12.
Differential equations describing the tidal evolution of the earth's rotation and of the lunar orbital motion are presented in a simple close form. The equations differ in form for orbits fixed to the terrestrial equator and for orbits with the nodes precessing along the ecliptic due to solar perturbations. Analytical considerations show that if the contemporary lunar orbit were equatorial the evolution would develop from an unstable geosynchronous orbit of the period about 4.42 h (in the past) to a stable geosynchronous orbit of the period about 44.8 days (in the future). It is also demonstrated that at the contemporary epoch the orbital plane of the fictitious equatorial moon would be unstable in the Liapunov's sense, being asymptotically stable at early stages of the evolution. Evolution of the currently near-ecliptical lunar orbit and of the terrestrial rotation is traced backward in time by numerical integration of the evolutional equations. It is confirmed that about 1.8 billion years ago a critical phase of the evolution took place when the equatorial inclination of the moon reached small values and the moon was in a near vicinity of the earth. Before the critical epoch t cr two types of the evolution are possible, which at present cannot be unambiguously distinguished with the help of the purely dynamical considerations. In the scenario that seems to be the most realistic from the physical point of view, the evolution also has started from a geosynchronous equatorial lunar orbit of the period 4.19 h. At t < t cr the lunar orbit has been fixed to the precessing terrestrial equator by strong perturbations from the earth's flattening and by tidal effects; at the critical epoch the solar perturbations begin to dominate and transfer the moon to its contemporary near-ecliptical orbit which evolves now to the stable geosynchronous state. Probably this scenario is in favour of the Darwin's hypothesis about originating the moon by its separation from the earth. Too much short time scale of the evolution in this model might be enlarged if the dissipative Q factor had somewhat larger values in the past than in the present epoch. Values of the length of day and the length of month, estimated from paleontological data, are confronted with the results of the developed model.  相似文献   
13.
We present the results of our analysis of the RXTE observations for two transient sources, IGR J17091-3624 and IGR J18539+0727, in April 2003. The derived energy spectra of the sources and the power-density spectra of their light curves make it possible to classify them as low/hard-state X-ray binaries. The parameters of the power spectrum for IGR J18539+0727 lead us to tentatively conclude that the compact object in this binary is a black hole.  相似文献   
14.
In this paper we show that a change in the signs of some of the metric components of the solution of the field equations for the classical cosmic string results in a solution which we interpret as a time-dependent wall composed of tachyons. We show that the walls have the property of focusing the paths of particles which pass through them. As an illustration of this focusing, we demonstrate the results of a simple simulation of the interaction between one such tachyon wall and a rotating disk of point masses. This interaction leads to the temporary formation of spiral structures. These spiral structures exist for a time on the order of one galactic rotation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
15.
Systematic and uniform sets of photometric and polarimetric observations of comet 1P/Halley have been analyzed. The phase dependence of brightness for comet Halley was obtained at phase angles α ranging from 1.4° ≤ α ≤ 65°. The following parameters were determined: the amplitude of the opposition effect Δm = 0.75m ± 0.06m; the half-width at a half-maximum of intensity HWHM = 6.4° ± 1.6°; the linear phase coefficient β = 0.0045 ± 0.0001 mag/deg for α from 30° ≤ α ≤ 65°; and the phase angle at which a nonlinear increase in brightness starts, α opp ≈ 31°. For the first time, the phase-angle dependence was obtained for the color of the dust of comet Halley: the color index BC-RC systematically decreases with increasing phase angle. Such a phase behavior of the dust color can be caused by the decrease in the mean size of dust particles that occurs when the comet approaches the Sun. For comet Halley, the negative polarization branch is almost symmetric; the minimal value of polarization is P min = −1.54% at a phase angle αmin = 10.5°, and the inversion angle is αinv = 21.7°. A comparative analysis of the phase functions of brightness and polarization has been performed for the cometary dust and atmosphereless bodies. Among the latter are low-albedo asteroids of the P and C types (102 Miriam and 47 Aglaja, respectively), as well as Deimos; high-albedo objects, such as the E-type asteroid 64 Angelina and the icy satellite of Jupiter Europa; and the Moon with its intermediate albedo. The possibility of a weak depression in the negative polarization branch of comets Halley and 47P/Ashbrook-Jackson at phase angles smaller than 2° is discussed.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 353–363.Original Russian Text Copyright © 2005 by Rosenbush.  相似文献   
16.
We found the equilibrium conditions for a self-gravitating toroidal vortex by taking thermal pressure into account. These conditions are shown to significantly differ from those for a disk or a sphere. The evolution of a thin vortex turns it into a compact vortex that loses mechanical stability for low masses at a polytropic index γ<4/3 but retains stability for sufficiently high masses and densities determined by the velocity circulation in the vortex.  相似文献   
17.
Analysis of the RXTE slew data in October 1996 revealed a weak X-ray burst from the millisecond pulsar SAX J 1808.4-3658. The 3–20-keV energy spectrum of the source can be described by a power law with an index of 2.0 and a(3-to 20 keV) luminosity of ~1.4×1035 erg s?1 (the distance to the source was taken to be 2.5 kpc). Because of the short exposure time, we failed to detect weak pulsations at a frequency of 401 Hz in the source. The (2σ) upper limit of the pulse fraction is ~13%.  相似文献   
18.
19.
Nonstationary hydrodynamic models of a viscous accretion disk around a central compact object were constructed. Two different numerical methods (TVD and SPH) are used to study the dynamics of dissipatively unstable acoustic perturbations at the nonlinear stage in terms of the standard α-disk model. The standard disk accretion in the Shakura-Sunyaev model is unstable against acoustic waves for various parameters of the system. If the α parameter, which specifies the level of turbulent viscosity, exceeds α?0.03, then a complex nonstationary system of small-scale weak shock waves is formed. The growth rate of the perturbations is higher in the central disk region. For α?0.2, the relative shock amplitude can exceed 50% of the equilibrium disk parameters. The reflection of waves from the disk boundaries and their nonlinear interaction are important factors that can produce unsteady accretion. The luminosity of such a disk undergoes quasi-periodic oscillations at a level of several percent (?5%) of the equilibrium level.  相似文献   
20.
The effect of particle-particle interaction on the adiabatic index γ for an electron-positron plasma is considered. An improved method for numerically calculating the Hartree-Fock exchange integral is presented and its relativistic asymptotics is determined. An approximation formula is derived for the correlation part of the interaction in the low-density limit. This formula includes degeneracy and the positron component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号