首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   8篇
地质学   8篇
海洋学   8篇
天文学   18篇
综合类   2篇
自然地理   4篇
  2020年   3篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
排序方式: 共有51条查询结果,搜索用时 418 毫秒
21.
Protected areas will more efficiently protect biodiversity if threats to the persistence of populations are addressed. Seagrass meadows are globally regarded as critical habitats because of their ecosystem services, human use values, and their diminishing extent. While selecting priority areas for conservation of seagrass meadows is largely aimed at maximizing the protection of their biodiversity, little attention is paid to consider simultaneously the representation of biodiversity and the minimization of threats. This study developed and tested an approach for integrating vulnerability of seagrass meadows to anthropogenic disturbance with the selection of estuarine-protected areas. Vulnerability was measured by data on different land use types in subcatchments. Conservation value was measured by irreplaceability, diversity indices, and rarity of macroinvertebrate species in seagrass meadows. Vulnerability was incorporated into conservation planning by plotting grid cell scores for conservation value versus their scores for vulnerability. The results showed that the performance of the model for the integration of vulnerability into estuarine conservation planning was sensitive to the data treatment. The vulnerability of seagrass meadows and accordingly the arrangement of priority areas for conservation and management attention may change if more information is incorporated into the measurement of vulnerability.  相似文献   
22.
The cathodoluminescence (CL) of a variety of alkali feldspars from South Greenland has been examined in an attempt to understand the causes of the CL and its petrological significance. Analytical methods have included CL spectroscopy, secondary ion mass spectrometry (SIMS) and electron paramagnetic resonance (EPR) to correlate the presence of certain CL emissions to the presence of certain trace element and point defects. Where possible, blue and red luminescent fractions of the same rock samples have been separated and analysed separately. Blue CL appears to relate to the presence of electron holes on bridging oxygens, particularly on the Al-O-Al bridge, as determined from EPR studies. No correlation with other proposed activators for blue CL such as Eu2+, Ga3+ or Ti4+ was observed. Some blue luminescent feldspars also have an emission in the infra-red (IR), invisible during normal visible CL petrography. The red and IR CL emissions correspond to features in EPR spectra attributed to Fe3+ and support previous suggestions that Fe3+ is related to this emission. However, our studies indicate that the visible red CL relates specifically to Fe3+ on the T1 site, whereas the equivalent CL from disordered feldspars lies in the IR. The difference between red and IR CL emissions therefore relates to the state of Fe3+ order across the tetrahedral sites. These data allow more meaningful interpretations of CL as a petrographic tool in alkali feldspar-bearing rocks. Received: 5 March 1998 / Accepted: 23 November 1998  相似文献   
23.
On 15 August 1994 we launched the EUVS sounding rocket payload to observe the 825-1110 angstrom region of Venus's far ultraviolet airglow spectrum. The EUVS telescope/spectrograph obtained good data at five times higher spectral resolution than was previously available in the far ultraviolet. We present these data and compare our results to those obtained by the Galileo UVS and Venera 11/12 UV spectrophotometers. We identify several new spectral emission features, including both singly ionized nitrogen and molecular nitrogen in Venus's spectrum. We also see evidence for electron-impact-induced emission from CO. Finally, the EUVS data indicate that the "Ar" emissions detected in Venus's far ultraviolet spectrum by Venera 11/12 spectrophotometers are in fact not due to argon, thus eliminating the discrepancy between in situ and remote sensing measurements.  相似文献   
24.
The rate of pyrite oxidation in moist air was determined by measuring, over time, the pressure difference between a sealed chamber containing pyrite plus oxygen and a control. The experiments carried out at 25°C, 96.7% fixed relative humidity, and oxygen partial pressures of 0.21, 0.61, and 1.00 atm showed that the rate of oxygen consumption is a function of oxygen partial pressure and time. The rates of oxygen consumption (r, mol/m2sec) fit the expression
(A)  相似文献   
25.
108 +/- 11 photons of the martian He 584-angstroms airglow detected by the Extreme Ultraviolet Explorer satellite during a 2-day exposure (January 22-23, 1993) correspond to the effective disk average intensity of 43 +/- 10 Rayleigh. Radiative transfer calculations, using a model atmosphere appropriate to the conditions of the observation and having an exospheric temperature of 210 +/- 20 K, result in a He mixing ratio of 1.1 +/- 0.4 ppm in the lower atmosphere. Nonthermal escape of helium is due to electron impact ionization and pickup of He+ by the solar wind, to collisions with hot oxygen atoms, and to charge exchange with molecular species with corresponding column loss rates of 1.4 x 10(5), 3 x 10(4), and 7 x 10(3) cm-2 sec-1, respectively. The lifetime of helium on Mars is 5 x 10(4) years. The He outgassing rate, coupled with the 40Ar atmospheric abundance and with the K:U:Th ratio measured in the surface rocks, is used as input to a single two-reservoir degassing model which is applied to Mars and then to Venus. A similar model with known abundances of K, U, and Th is applied to Earth. The models for Earth and Mars presume loss of all argon accumulated in the atmospheres during the first billion years by large-scale meteorite and planetesimal impacts. The models show that the degassing coefficients for all three planets may be approximated by function delta = delta (0)(t(0)/t)1/2 with delta (0) = 0/1, 0.04, and 0.0125 Byr-1 for Earth, Venus, and Mars, respectively. After a R2 correction this means that outgassing processes on Venus and Mars are weaker than on Earth by factors of 3 and 30, respectively. Mass ratios of U and Th are almost the same for all three planets, while potassium is depleted by a factor of 2 in Venus and Mars. Mass ratios of helium and argon are close to 5 x 10(-9) and 2 x 10(-8) g/g in the interiors of all three planets. The implications of these results are discussed.  相似文献   
26.
The helium resonance line at 584 Å has been observed with the UltraViolet Imaging Spectrograph (UVIS) Extreme Ultraviolet channel during the flyby of Venus by Cassini at a period of high solar activity. The brightness was measured along the disk from the morning terminator up to the bright limb near local noon. The mean disk intensity was ∼320 R, reaching ∼700 R at the bright limb. These values are slightly higher than those determined from previous observations. The sensitivity of the 584 Å intensity to the helium abundance is analyzed using recent cross-sections and solar irradiance measurements at 584 Å. The intensity distribution along the UVIS footprint on the disk is best reproduced using the EUVAC solar flux model and the helium density distribution from the VTS3 empirical model. It corresponds to a helium density of 8×106 cm−3 at the level of where the CO2 is 2×1010 cm−3.  相似文献   
27.
The occultation of bright star HIP9369 by the northern polar region of Jupiter was observed from four locations in North and South America, providing four data sets for ingress and egress. The inversion of the eight occultation lightcurves provides temperature profiles at different latitudes ranging from 55°N to 73.2°N. We estimate the errors on the profiles due to the uncertainties of the inversion method and compare the value of the temperature at the deepest level probed (∼ 50 μbar) with previous observations. The shape of the temperature gradient profile is found similar to previous investigations of planetary atmospheres with propagating and breaking gravity waves. We analyze the small scale structures in both lightcurves and temperature profiles using the continuous wavelet transform. The calculated power spectra of localized fluctuations in the temperature profiles show slopes close to −3 for all eight profiles. We also isolate and reconstruct the three-dimensional geometry of a single wave mode with vertical and horizontal wavelengths of respectively 3 and 70 km. The identified wave is consistent with the gravity wave regime, with a horizontal phase speed nearly parallel to the planetary meridian. Nevertheless, the dissipation of the corresponding wave in Jupiter’s stratosphere should preclude its detection at the observed levels and an acoustic wave cannot be ruled out.  相似文献   
28.
29.
Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80–100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05–0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979–21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is attained in the key 14N15N absorption bands located between 85 and 90 nm at altitudes ∼1100–1600 km above Pluto’s surface. Additionally, an 14N15N isotope absorption depth ∼4–15% is predicted for observations obtained at these altitudes at a spectral resolution of ∼0.2–0.3 nm, if the N2 isotopologue 15N/14N percent ratio is comparable to the 0.37–0.6% ratio observed at Earth, Titan and Mars. If we presume that the predicted absorption depth must be at least 25% greater than the expected observational uncertainty, then it follows that a statistically significant detection of these signatures and constraint of the N2 isotopologue 14N/15N ratio within Pluto’s atmosphere will be possible if the attainable observational signal-to noise (S/N) ratio is ?9. The New Horizons (NH) Mission will be able to obtain high S/N, 0.27–0.35 nm full-width half-max 80–100 nm spectral observations of Pluto using the Alice spectrograph. Based on the NH/Alice specifications we have simulated 0.3 nm spectral resolution solar occultation spectra for the 1100–1600 km altitude range, assuming 30 s integration times. These simulations indicate that NH/Alice will obtain spectral observations within this altitude range with a S/N ratio ∼25–50, and should be able to reliably detect the 14N15N gas absorption signature between 85 and 90 nm if the 14N15N concentration is ∼0.3% or greater. This, additionally, implies that the non-detection of the 14N15N species in the 1100–1600 km range by NH/Alice may be used to reliably establish an upper limit to the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere. Similar results may be derived from 0.2 to 0.3 nm spectral resolution observations of any other N2-rich Solar System or exoplanet atmosphere, provided the observations are attained with similar S/N levels.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号