首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   71篇
  国内免费   8篇
测绘学   20篇
大气科学   83篇
地球物理   310篇
地质学   408篇
海洋学   97篇
天文学   243篇
综合类   7篇
自然地理   115篇
  2021年   17篇
  2020年   23篇
  2019年   22篇
  2018年   27篇
  2017年   30篇
  2016年   35篇
  2015年   37篇
  2014年   33篇
  2013年   59篇
  2012年   43篇
  2011年   60篇
  2010年   66篇
  2009年   59篇
  2008年   75篇
  2007年   47篇
  2006年   55篇
  2005年   47篇
  2004年   36篇
  2003年   50篇
  2002年   56篇
  2001年   22篇
  2000年   10篇
  1999年   16篇
  1998年   17篇
  1997年   15篇
  1996年   17篇
  1995年   14篇
  1994年   16篇
  1993年   20篇
  1992年   11篇
  1991年   6篇
  1990年   8篇
  1989年   8篇
  1988年   7篇
  1987年   11篇
  1986年   7篇
  1985年   17篇
  1984年   20篇
  1983年   14篇
  1982年   19篇
  1981年   17篇
  1980年   15篇
  1979年   9篇
  1978年   15篇
  1977年   15篇
  1976年   11篇
  1975年   8篇
  1974年   8篇
  1973年   10篇
  1970年   6篇
排序方式: 共有1283条查询结果,搜索用时 21 毫秒
31.
The sizes, composition, and number of particles comprising the rings of Saturn may be meaningfully constrained by a combination of radar- and radio-astronomical observations. In a previous paper, we have discussed constraints obtained from radar observations. In this paper, we discuss the constraints imposed by complementary “passive” radio observations at similar wavelengths. First, we present theoretical models of the brightness of Saturn's rings at microwave wavelengths (0.34–21.0 cm), including both intrinsic ring emission and diffuse scattering by the rings of the planetary emission. The models are accurate simulations of the behavior of realistic ring particles and are parameterized only by particle composition and size distribution, and ring optical depth. Second, we have reanalyzed several previously existing sets of interferometric observations of the Saturn system at 0.83-, 3.71-, 6.0-, 11.1-, and 21.0-cm wavelengths. These observations all have spatial resolution sufficient to resolve the rings and planetary disk, and most have resolution sufficient to resolve the ring-occulted region of the disk as well. Using our ring models and a realistic model of the planetary brightness distribution, we are able to establish improved constraints on the properties of the rings. In particular, we find that: (a) the maximum optical depth in the rings is ~ 1.5 ± 0.3 referred to visible wavelengths; (b) a significant decrease in ring optical depth from λ3.7 to λ21.0 cm allows us to rule out the possibility that more than ~30% of the cross section of the rings is composed of particles larger than a meter or so; this assertion is essentially independent of uncertainties in particle adsorption coefficient; and (c) the ring particles cannot be primarily of silicate composition, independently of particle size, and the particles cannot be primarily smaller than ~0.1 cm, independently of composition.  相似文献   
32.
33.
We have used Pollack et al.'s 1976 calculations of the quasi-equilibrium contraction of Saturn to study the influence of the planet's early high luminosity on the formation of its satellites and rings. Assuming that the condensation of ices ceased at the same time within Jupiter's and Saturn's primordial nebulae, and using limits for the time of cessation derived for Jupiter's system by Pollack and Reynolds (1974) and Cameron and Pollack (1975), we arrive at the following tentative conclusions. Titan is the innermost satellite at whose position a methane-containing ice could condense, a result consistent with the presence of methane in this satellite's atmosphere. Water ice may have been able to condense at the position of all the satellites, a result consistent with the occurrence of low-density satellites close to Saturn. The systematic decrease in the mass of Saturn's regular satellites with decreasing distance from Saturn may have been caused partially by the larger time intervals for the closer satellites between the start of contraction and the first condensation of ices at their positions and between the start of contraction and the time at which Saturn's radius became less than a satellite's orbital radius. Ammonia ices, principally NH4SH, were able to condense at the positions of all but the innermost satellites.Water ice may bave been able to condense in the region of the rings close to the end of the condensation period. We speculate that the rings are unique to Saturn because on the one hand, temperatures within Jupiter's Roche limit never became cool enough for ice particles to form before the end of the condensation period and on the other hand, ice particles formed only very early within Uranus' and Neptune's Roche limits, and were eliminated by gas drag effects that caused them to spiral into the planet before the gas of these planets' nebula was eliminated. Gas drag would also have eliminated any rocky particles initially present inside the Roche limit.We also derive an independent estimate of several million years for the time between the start of the quasi-equilibrium contraction of Saturn and the cessation of condensation. This estimate is based on the density and mass characteristics of Saturn's satellites. Using this value rather than the one found for Jupiter's satellites, we find that the above conclusions about the rings and the condensation of methane-and ammonia-containing ices remain valid.  相似文献   
34.
Non-LTE synthetic spectra derived from a detailed analysis of the formation of the CN (0, 0) λ13883 Å spectrum are compared with center-limb photoelectric spectra taken at Kitt Peak National Observatory. Kitt Peak National Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. Significant non-LTE effects are found and the Kurucz, Altrock-Cannon, Mount-Linsky II, and HSRA models are compared. We derive a solar carbon abundance of A c =8.30±0.10 for the Mount-Linsky model and A c =8.40±0.10 for the Altrock-Cannon model, compared to the HSRA value of A c =8.55±0.10, assuming a nitrogen abundance of logA N=7.93. In addition we specify the regions of formation for the CN(0, 0) 3883.35 Å bandhead at disc center and limb.  相似文献   
35.
To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO2-CaO-Al2O3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O’D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O’D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al2O3-SiO2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients (α) were obtained that give the best fits to the time variation of the residue compositions. Evaporation coefficients derived for Fe(g), Mg(g), and SiO(g) from the Hashimoto (1983) experiments are similar to those found by Alexander [Alexander C. M. O’D. (2004) Erratum. Meteoritics Planet. Sci. 39, 163] in his EQR treatment of the same data and also adequately describe the FeO-bearing stages of the Wang et al. (2001) experiments. From the Yu et al. (2003) experiments at 1723 K, αNa = 0.26 ± 0.05, and αK = 0.13 ± 0.02 in vacuum, and αNa = 0.042 ± 0.020, andαK = 0.017 ± 0.002 in 9 × 10−5 bar H2. In the FeO-free stages of the Wang et al. (2001) experiments, αMg and αSiO are significantly different from their respective values in the FeO-bearing portions of the same experiments and from the vacuum values obtained at the same temperature by Richter [Richter F. M., Davis A. M., Ebel D. S., Hashimoto A. (2002) Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta 66, 521-540] for CMAS compositions much lower in MgO. When corrected for temperature, the values of αMg and αSiO that best describe the FeO-free stages of the Wang et al. (2001) experiments also adequately describe the FeO-free stage of the Cohen et al. (2004) H2 experiments, but αFe that best describes the FeO-bearing stage of the latter experiment differs significantly from the temperature-corrected value derived from the Hashimoto (1983) vacuum data.  相似文献   
36.
Hydrothermal vent fluids from Middle Valley, a sediment-covered vent field located on the northern Juan de Fuca Ridge, were sampled in July, 2000. Eight different vents with exit temperatures of 186-281 °C were sampled from two areas of venting: the Dead Dog and ODP Mound fields. Fluids from the Dead Dog field are characterized by higher concentrations of ΣNH3 and organic compounds (C1-C4 alkanes, ethene, propene, benzene and toluene) compared with fluids from the ODP Mound field. The ODP Mound fluids, however, are characterized by higher C1/(C2 + C3) and benzene:toluene ratios than those from the Dead Dog field. The aqueous organic compounds in these fluids have been derived from both bacterial processes (methanogenesis in low temperature regions during recharge) as well as from thermogenic processes in higher temperature portions of the subsurface reaction zone. As the sediments undergo hydrothermal alteration, carbon dioxide and hydrocarbons are released to solution as organic matter degrades via a stepwise oxidation process. Compositional and isotopic differences in the aqueous hydrocarbons indicate that maximum subsurface temperatures at the ODP Mound are greater than those at the Dead Dog field. Maximum subsurface temperatures were calculated assuming that thermodynamic equilibrium is attained between alkenes and alkanes, benzene and toluene, and carbon dioxide and methane. The calculated temperatures for alkene-alkane equilibrium are consistent with differences in the dissolved Cl concentrations in fluids from the two fields, and confirm that subsurface temperatures at the ODP Mound are hotter than those at the Dead Dog field. Temperatures calculated assuming benzene-toluene equilibrium and carbon dioxide-methane equilibrium are similar to observed exit temperatures, and do not record the hottest subsurface conditions. The difference in subsurface temperatures estimated using organic geochemical thermometers reflects subsurface cooling processes via mixing of a hot, low salinity vapor with a cooler, seawater salinity fluid. Because of the disparate temperature dependence of alkene-alkane and benzene-toluene equilibria, the mixed fluid records both the high and low temperature equilibrium conditions. These calculations indicate that vapor-rich fluids are presently being formed in the crust beneath the ODP Mound, yet do not reach the surface due to mixing with the lower temperature fluids.  相似文献   
37.
38.
39.
40.
Berman’s (1983) activity-composition model for CaO-MgO-Al2O3-SiO2 liquids is used to calculate the change in bulk chemical and isotopic composition during simultaneous cooling, evaporation, and crystallization of droplets having the compositions of reasonable condensate precursors of Types A and B refractory inclusions in CV3 chondrites. The degree of evaporation of MgO and SiO2, calculated to be faithfully recorded in chemical and isotopic zoning of individual melilite crystals, is directly proportional to evaporation rate, which is a sensitive function of PH2, and inversely proportional to the droplet radius and cooling rate. When the precursors are partially melted in pure hydrogen at peak temperatures in the vicinity of the initial crystallization temperature of melilite, their bulk chemical compositions evolve into the composition fields of refractory inclusions, mass-fractionated isotopic compositions of Mg, Si, and O are produced that are in the range of the isotopic compositions of natural inclusions, and melilite zoning profiles result that are similar to those observed in real inclusions. For droplets of radius 0.25 cm evaporating at PH2 = 10−6 bar, precursors containing 8 to 13 wt.% MgO and 20 to 23% SiO2 evolve into objects similar to compact Type A inclusions at cooling rates of 2 to 12 K/h, depending on the precise starting composition. Precursors containing 13 to 14 wt.% MgO and 23 to 26% SiO2 evolve into objects with the characteristics of Type B1 inclusions at cooling rates of 1.5 to 3 K/h. The relatively SiO2-poor members of the Type B2 group can be produced from precursors containing 14 to 16 wt.% MgO and 27 to 33% SiO2 at cooling rates of <1 K/h. Type B2’s containing 27 to 35 wt.% SiO2 and <12% MgO require precursors with higher SiO2/MgO ratios at MgO > 15% than are found on any condensation curve. The characteristics of fluffy Type A inclusions, including their reversely zoned melilite, can only be understood in the context of this model if they contain relict melilite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号