首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
测绘学   1篇
地球物理   12篇
地质学   14篇
海洋学   10篇
天文学   34篇
综合类   2篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2014年   5篇
  2013年   13篇
  2012年   7篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
51.
52.
We test possible lensing scenarios of the JVAS system B2114+022, in which two galaxies at different redshifts ('G1' at z 1=0.3157 and 'G2' at z 2=0.5883) are found within 2 arcsec of quadruple radio sources. For our investigation, we use possible lensing constraints derived from a wealth of data on the radio sources obtained with VLA, MERLIN, VLBA and EVN as well as HST imaging data on the two galaxies, which were presented recently in Augusto et al. In the present study, we focus on reproducing the widest separated, observationally similar radio components A and D as lensed images. We first treat G2 (which is the more distant one from the geometric centre) as a shear term, and then consider two-plane lensing explicitly including G2's potential at the z 2 plane as the first case of two-plane lens modelling. Our modelling results not only support the hypothesis that the system includes gravitationally lensed images of a higher-redshift extragalactic object, but they also show that the explicit inclusion of G2's potential at the second lens plane is necessary in order to fit the data with astrophysically plausible galaxy parameters. Finally, we illustrate a natural consequence of a two-plane lens system, namely the prediction of distortion as well as shift and stretching of G2's isophotes by G1's potential, which can in principle be measured by subtracting out G1's light distribution in an image of high signal-to-noise ratio and good angular resolution, especially a multicolour one.  相似文献   
53.
Chae  Jongchul  Moon  Yong-Jae  Wang  Haimin  Yun  H.S. 《Solar physics》2002,207(1):73-85
Canceling magnetic features are commonly believed to result from magnetic reconnection in the low atmosphere. According to the Sweet–Parker type reconnection model, the rate of flux cancellation in a canceling magnetic feature is related to the converging speed of each pole. To test this prediction observationally, we have analyzed the time variation of two canceling magnetic features in detail using the high-resolution magnetograms taken by the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO). As a result, we have obtained the rate and converging speed of flux cancellation in each feature: 1.3×1018 Mx hr–1 (or 1.1×106 G cm s–1 per unit contact length) and 0.35 km s–1 in the smaller one, and 3.5×1018 Mx hr–1 (1.2×106 G cm s–1) and 0.27 km s–1 in the bigger one. The observed speeds are found to be significantly bigger than the theoretically expected ones, but this discrepancy can be resolved if uncertainty factors such as low area filling factor of magnetic flux and low electric conductivity are taken into account.  相似文献   
54.
55.
In the Youngcheon Diversion Tunnel area, South Korea, 46 samples of tunnel seepage water (TSW) and borehole groundwater were collected from areas with sedimentary rocks (mainly sandstone and shale) and were examined for hydrogeochemical characteristics. The measured SO4 concentrations range widely from 7·7 to 942·0 mg/l, and exceed the Korean Drinking Water Standard (200 mg/l) in about half the samples. The TDS (total dissolved solid) content generally is high (171–1461 mg/l) from more shale‐rich formations and also reflects varying degrees of water–rock interaction. The water is classified into three groups: Ca? SO4 type (61% of the samples collected), Ca? SO4? HCO3 type (15%) and Ca? HCO3 type (24%). The Ca? HCO3 type water (mean concentrations=369 mg/l Ca, 148 mg/l HCO3 and 23 mg/l SO4) reflected the simple reaction between CO2‐recharged water and calcite, whereas the more SO4‐rich nature of Ca? SO4 type water (mean concentrations=153 mg/l Ca, 66 mg/l HCO3 and 416 mg/l SO4) reflected the oxidation of pyrite in sedimentary rocks and fracture zones. Pyrite oxidation resulted in precipitation of amorphous iron hydroxide locally within the tunnel as well as in high concentrations of Ca (mean 153 mg/l) and Na (mean 49 mg/l) for TSW, and is associated with calcite dissolution resulting in pH buffering. The pyrite oxidation required for the formation of Ca? SO4 type water was enhanced by the diffusion of oxygenated air through the fractures related to the tunnel's construction. The subsequent outgassing of CO2 into the tunnel resulted in precipitation of iron‐bearing carbonate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
56.
Magneto‐rheological (MR) dampers are a promising device for seismic hazard mitigation because their damping characteristics can be varied adaptively using an appropriate control law. During the last few decades researchers have investigated the behavior of MR dampers and semi‐active control laws associated with these types of dampers for earthquake hazard mitigation. A majority of this research has involved small‐scale MR dampers. To investigate the dynamic behavior of a large‐scale MR damper, characterization tests were conducted at the Lehigh Network for Earthquake Engineering Simulation equipment site on large‐scale MR dampers. A new MR damper model, called the Maxwell Nonlinear Slider (MNS) model, is developed based on the characterization tests and is reported in this paper. The MNS model can independently describe the pre‐yield and post‐yield behavior of an MR damper, which makes it easy to identify the model parameters. The MNS model utilizes Hershel–Bulkley visco‐plasticity to describe the post‐yield non‐Newtonian fluid behavior, that is, shear thinning and thickening behavior, of the MR fluid that occurs in the dampers. The predicted response of a large‐scale damper from the MNS model along with that from existing Bouc–Wen and hyperbolic tangent models, are compared with measured response from various experiments. The comparisons show that the MNS model achieves better accuracy than the existing models in predicting damper response under cyclic loading. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
57.
To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe (N=5), Mn (N=6), Cu (N=1), TCE (N=6), PCE (N=8), 1,2-DCA (N=1), and 1,2-dichloropropane (N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas (P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.  相似文献   
58.
59.

In sedimentology, stratigraphic sequences and cycles are ordered by time spans and physical scales, such as thickness, and bounded by discontinuities, including unconformities or flooding surfaces. Spectral analysis based on wavelet transform (WT) maxima is proposed and used as a quantitative tool to identify multi-order stratigraphic boundaries and cycles in well log data. The proposed spectral analysis is based on quantitative analysis on the center frequencies and resolutions of Gaussian wavelets in time and frequency, and uses a combination of the WT maxima based on both the first order Gaussian wavelet having a high time resolution and the seventh order Gaussian wavelet having a high frequency resolution. WT maxima spectra, which can characterize the evolution of WT maxima across scales and periods along WT maxima lines concerned with sequence boundaries, are used to detect dominant spectral peaks corresponding to the time-period domain WT maxima and to determine WT maxima spectral slopes. The WT maxima spectral slopes are helpful for discriminating sequence boundaries from intrasequence cyclic variations in well log data, and the time-period domain WT maxima are used to relate the detected boundaries to relevant cycles. The interval WT maxima spectra and the stationary index, related to the WT maxima spectra, are introduced as indicators that can be used for the hierarchical ordering of the boundaries and cycles. Application of the proposed method to well log data shows that the suggested method is efficient in identifying multi-order sequences that relate well to the Milankovitch cycles.

  相似文献   
60.
It is well known that real‐time hybrid simulation (RTHS) is an effective and viable dynamic testing method. Numerous studies have been conducted for RTHS during the last 2 decades; however, the application of RTHS toward practical civil infrastructure is fairly limited. One of the major technical barriers preventing RTHS from being widely accepted in the testing community is the difficulty of accurate displacement control for axially stiff members. For such structures, a servo‐hydraulic actuator can generate a large force error due to the stiff oil column in the actuator even if there is a small axial displacement error. This difficulty significantly restricts the implementation of RTHS for structures such as columns, walls, bridge piers, and base isolators. Recently, a flexible loading frame system was developed, enabling a large‐capacity real‐time axial force application to axially stiff members. With the aid of the flexible loading frame system, this paper demonstrates an RTHS for a bridge structure with an experimental reinforced concrete pier, which is subjected to both horizontal and vertical ground motions. This type of RTHS has been a challenging task due to the lack of knowledge for satisfying the time‐varying axial force boundary condition, but the newly developed technology for real‐time force control and its incorporation into RTHS enabled a successful implementation of the RTHS for the reinforced concrete pier of this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号