首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   6篇
测绘学   2篇
大气科学   10篇
地球物理   55篇
地质学   51篇
海洋学   18篇
天文学   48篇
综合类   1篇
自然地理   7篇
  2021年   5篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   13篇
  2009年   4篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有192条查询结果,搜索用时 234 毫秒
31.
The northern Kyushu-Palau Ridge (KPR), remnant conjugate arc of the Izu-Ogasawara (Bonin)-Mariana (IBM) active arc, is dominated by basalt-andesite except for the Komahashi-Daini Seamount where acidic plutonic rocks of 38 Ma were recovered. These mafic to intermediate volcanics are produced by the rifting volcanism in the proto-IBM arc associated with spreading of the Shikoku Basin. The HFSE and HREE contents and ratios of these volcanics indicate enriched source mantle composition compared to recent volcanic front. The LILE ratios exhibit similar characteristics to reararc volcanism of the recent Izu arc, and some enriched volcanics exhibit high abundance of sediment melt inputs. Based on these observations and compilations of the published data set, the replacement event of the wedge mantle under the IBM arc occurred two times. The first event occurred between 45 and 38 Ma, with Pacific type mantle being replaced by depleted Indian type mantle. The second event occurred between 36 and 25 Ma, enriched mantle flowed from reararc side. The slab component during the proto-IBM arc rifting was a similar characteristic to recent reararc volcanism of the Izu arc, and sediment melt added in a local area.  相似文献   
32.
One of the Pre-Siwalik foreland basin sedimentary units, the Dumri Formation, is tectonically covered by the Lesser Himalayan Crystalline nappe and the Kuncha-Naudanda thrust sheet. It is narrowly distributed in the eastern margin of the Karnali klippe along the NNE–SSW trending Chakure Fault. The whole sequence of the fluvial Dumri Formation attaining 1500 m in thickness is weakly metamorphosed to muscovite phyllite and foliated phyllitic sandstone. The metamorphic grade decreases stratigraphically downward and underlying Nummulitic limestone of the middle Eocene Bhainskati Formation is converted into a slaty limestone. No metamorphic mica is detected from the late Cretaceous to Paleocene Amile Formation below the Bhainskati Formation. These facts indicate that the Tansen Group has undergone inverted metamorphism.A 40Ar/39Ar plateau age of 25.69±0.13 Ma was obtained from garnetiferous biotite gneiss in the lower part of the crystalline nappe. Another 40Ar/39Ar age spectrum from muscovite phyllite of the Dumri Formation suggests that metamorphism occurred at 16–17 Ma. The origin of the inverted metamorphism limited to the uppermost part of the Lesser Himalayan autochthon can be attributed to heat from the hot crystalline nappe and shearing along the sole thrust of the Kuncha-Naudanda thrust sheet. The depositional age of the Dumri Formation is estimated to be 26–17 Ma.Provenance of the Dumri Formation is considered to be from the Naudanda Quartzite, the Kuncha Formation and the Tibetan Tethys sediments, because the sandstone contains orthoquartzite pebbles, phyllitic lithic fragments and a sparry calcite cement. The sedimentary facies indicates deposition by meandering rivers on flood-plains in the distal part of the foreland basin. No proximal facies, such as alluvial fan and pebbly braided river deposits, could be detected from the formation, though it is near the Main Central Thrust (MCT). The northern continuation of the foreland basin sediments must be concealed beneath the Higher Himalayan Crystalline. Judging from the present distribution of the Dumri Formation from the south of the Main Boundary Thrust (MBT) to near the MCT and from the shortening of the Lesser Himalayan sediments by thrusts and folds, the width of the foreland basin where the Dumri Formation was deposited is estimated to have been more than 300 km.  相似文献   
33.
Soil bulk density (ρb) is commonly treated as static in studies of land surface dynamics. Magnitudes of errors associated with this assumption are largely unknown. Our objectives were to (a) quantify ρb effects on soil hydrologic and thermal properties and (b) evaluate effects of ρb on surface energy balance and heat and water transfer. We evaluated 6 soil properties, volumetric heat capacity, thermal conductivity, soil thermal diffusivity, water retention characteristics, hydraulic conductivity, and vapour diffusivity, over a range of ρb, using a combination of 6 models. Thermal conductivity, water retention, hydraulic conductivity, and vapour diffusivity were most sensitive to ρb, each changing by fractions greater than the associated fractional changes in ρb. A 10% change in ρb led to 10–11% change in thermal conductivity, 6–11% change in saturated and residual water content, 49–54% change in saturated hydraulic conductivity, and 80% change in vapour diffusivity. Subsequently, 3 field seasons were simulated with a numerical model (HYDRUS‐1D) for a range of ρb values. When ρb increased 25% (from 1.2 to 1.5 Mg m?3), soil temperature variation decreased by 2.1 °C in shallow layers and increased by 1 °C in subsurface layers. Surface water content differed by 0.02 m3 m?3 for various ρb values during drying events but differences mostly disappeared in the subsurface. Matric potential varied by >100 m of water. Surface energy balance showed clear trends with ρb. Latent heat flux decreased 6%, sensible heat flux increased 9%, and magnitude of ground heat flux varied by 18% (with a 25% ρb increase). Transient ρb impacted surface conditions and fluxes, and clearly, it warrants consideration in field and modelling investigations.  相似文献   
34.
The observed burst durations of Elementary Flare Bursts (5–25 s), as well as the related other flare characteristics, such as the temperature (30–50 MK), the electron density (log ne = 10 to 11) and the magnetic field strengths (100 G to 200 G) can be explained quantitatively by the mechanism of explosive coalescence.  相似文献   
35.
36.
The Algal Growth Potential (AGP) of water samples collected off Gamagori in Mikawa Bay was measured from May 1978 through February 1979, and the limiting nutrient was determined using regression analysis and enrichment bioassays. The surface and bottom water samples had AGP that produced increments of chemical oxygen demand (COD) of 2.1 mg l–1 and 3.1 mg l–1, respectively, on average. These values ofCOD correspond to 46% and 97% of the average COD values of the raw water samples at the surface and bottom, respectively. Seasonal changes of AGP showed a close correlation with those of dissolved inorganic nitrogen (DIN) concentration. Enrichment bioassays showed that DIN was the most deficient nutrient. The DIN:phosphate-phosphorus (PO4 3–-P) ratios and DIN: dissolved phosphorus (DP) ratios in the water samples were below the cellular N:P ratios of the natural algal populations. These results suggest that AGP was mainly limited by DIN concentration.  相似文献   
37.
We present evidence for strong hydrothermal activity in the eastern Manus Basin (depth: 1700–2100 m), the existence of large scale triple-layered buoyant plumes at depths of 1100 m (“shallow plume”), 1700 m (“deep plume”), and 1400 m (“middle plume” with less extent than the other two plumes) that were revealed from water column anomalies of CH4, Mn, Al and pH observed in November to December 1990. Judging from the horizontal distribution of these parameters, the deep plume seems to originate from two distinct hydrothermal sites (eastern and western sites) in the research area, the eastern site being visually ascertained with deep-tow observations at the same time. The CH4/Mn ratio (mol mol−1) of the deep plume (0.02–0.05) is the lowest yet observed in hydrothermal plumes. The order of magnitude difference of CH4/Mn ratios between the shallow plume and the deep plume suggests that different kinds of fluid-rock interaction occurred to make the hydrothermal end members for the deep and shallow plumes. The shallow plume, which had an areal extent of more than 50 km, may be an episodic “megaplume”, because it was not recognized in the previous CH4 profiles in 1986, and because it has a similar CH4/Mn ratio as the megaplume observed in the North Fiji Basin. We found that the eastern deep plume is characterized by enormously high aluminium concentrations (0.6– 1.5 μmol kg−1), pH anomalies (0.1) and high Al/Mn ratios (10–17). The endmember fluid for the eastern deep plume may have an unusually low pH value to dissolve this much aluminum during fluid-rock interaction, or this plume may originate from an eruption-influenced fluid.  相似文献   
38.
Laboratory experiments with a rotating tank confirm the bifurcation character of a barotropic flow driven by an inflow and an outflow described by Sakai (1986). The model, a circular basin with a topographic β-effect, simulates a mid-latitude oceanic feature. At a low Rossby number, stationary Rossby waves are observed which are symmetrical with a line connecting the inlet and the outlet. As the Rossby number increases, a bifurcation occurs and two kinds of vortex flows are observed. In the vortex, potential vorticity is almost uniform. In addition to the two vortex flows, a jet-like inertial flow can also be observed. In general, thre results of these experiments agree well with those of a low-order model and a numerical model.  相似文献   
39.
The objective of this study is to elucidate the burrow structure and to clarify the role of burrows in material cycle in the tidal flat. In our work, we focused on the dominant species in muddy tidal flat, crab Macrophthalmus japonicus.Burrow structure of Macrophthalmus japonicus was investigated on a Katsuura river tidal flat in Tokushima prefecture, Japan, using in situ resin casting. Sampling was conducted in August 2006, and a total of 48 burrow casts were obtained. Burrows consisted mainly of J-shaped structures (98%) while the rest belonged to U-shaped structures (2%). The maximum measured burrow volume was 120 cm3 and wall surface area was 224 cm2, while maximum burrow length and depth were 23.2 cm and 16.5 cm, respectively. Burrow volume and surface area were strongly correlated with carapace width of M. japonicus. Investigation of the individual number of M. japonicus in 13 quadrats (50 × 50 × 20 cm) was conducted using 2 mm sieve. The number of M. japonicus was 15–31 ind./m2. Using cohort analysis we estimated that surface area of burrows was 0.07–0.15 m2/m2.CO2 emission rate was measured at the surface sediment during the period from June to December 2008. Results varied from 13.8 ± 2.2 to 49.4 ± 3.2 mg CO2/m2/h, and organic carbon decomposition was 3.8 ± 0.6–13.5 ± 0.9 mg C/m2/h. This leads the increase of organic carbon decomposition by 1.1 times, because of the expansion of the tidal flat surface area by burrowing activity. Organic carbon decomposition in burrow walls therefore contributed to organic matter decomposition in the tidal flat. These results indicated that in situ activities of Macrophthalmus japonicus significantly influence the material cycle and it is important to consider the existence of burrow in order to understand the fluxes of materials and to evaluate the purification function of the tidal flat.  相似文献   
40.
The melting temperature of Fe–18 wt% Si alloy was determined up to 119 GPa based on a change of laser heating efficiency and the texture of the recovered samples in the laser-heated diamond anvil cell experiments. We have also investigated the subsolidus phase relations of Fe–18 wt% Si alloy by the in-situ X-ray diffraction method and confirmed that the bcc phase is stable at least up to 57 GPa and high temperature. The melting curve of the alloy was fitted by the Simon’s equation, P(GPa)/a = (T m(K)/T 0) c , with parameters, T 0 = 1,473 K, a = 3.5 ± 1.1 GPa, and c = 4.5 ± 0.4. The melting temperature of bcc Fe–18 wt% Si alloy is comparable with that of pure iron in the pressure range of this work. The melting temperature of Fe–18 wt% Si alloy is estimated to be 3,300–3,500 K at 135 GPa, and 4,000–4,200 K at around 330 GPa, which may provide the lower bound of the temperatures at the core–mantle boundary and the inner core–outer core boundary if the light element in the core is silicon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号