首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   17篇
  国内免费   7篇
测绘学   6篇
大气科学   41篇
地球物理   89篇
地质学   117篇
海洋学   137篇
天文学   82篇
综合类   6篇
自然地理   19篇
  2021年   3篇
  2020年   6篇
  2019年   9篇
  2018年   7篇
  2017年   17篇
  2016年   21篇
  2015年   10篇
  2014年   18篇
  2013年   26篇
  2012年   12篇
  2011年   18篇
  2010年   15篇
  2009年   25篇
  2008年   26篇
  2007年   26篇
  2006年   22篇
  2005年   25篇
  2004年   25篇
  2003年   20篇
  2002年   13篇
  2001年   14篇
  2000年   15篇
  1999年   16篇
  1998年   16篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   10篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
81.
The two drill holes, which penetrated sub‐horizontal rare earth element (REE) ore units at the Nechalacho REE in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify the enrichment mechanism of the high‐field‐strength elements (HFSE: Zr, Nb and REE). The REE ore units occur in the albitized and potassic altered miaskitic syenite. Zircon is the most common REE mineral in the REE ore units, and is divided into five types as follows: Type‐1 zircon occurs as discrete grains in phlogopite, and has a chemical character similar to igneous zircon. Type‐2 zircon consists of a porous HREE‐rich core and LREE–Nb–F‐rich rim. Enrichment of F in the rim of type‐2 zircon suggests that F was related to the enrichment of HFSE. The core of type‐2 zircon is regarded to be magmatic and the rim to be hydrothermal in origin. Type‐3 zircon is characterized by euhedral to anhedral crystals, which occur in a complex intergrowth with REE fluorocarbonates. Type‐3 zircon has high REE, Nb and F contents. Type‐4 zircon consists of porous‐core and ‐rim, but their chemical compositions are similar to each other. This zircon is a subhedral crystal rimmed by fergusonite. Type‐5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircon grains are filled by fergusonite. Type‐4 and type‐5 zircon grains have low REE, Nb and F contents. Type‐1 zircon is only included in one unit, which is less hydrothermally altered and mineralized. Type‐2 and type‐3 zircon grains mainly occur in the shallow units, while those of type‐4 and type‐5 are found in the deep units. The deep units have high HFSE contents and strongly altered mineral textures (type‐4 and type‐5) compared to the shallow units. Occurrences of these five types of zircon are different according to the depth and degree of the hydrothermal alteration by solutions rich in F and CO3, which permit a model for the evolution of the zircon crystallization in the Nechalacho REE deposit as follows: (i) type‐1 (discrete magmatic zircon) is formed in miaskitic syenite. (ii) LREE–Nb–F‐rich hydrothermal zircon formed around HREE‐rich magmatic zircon (type‐2). (iii) type‐3 zircon crystallized through the F and CO3‐rich hydrothermal alteration of type‐2 zircon which formed the complex intergrowth with REE fluorocarbonates; (iv) the CO3‐rich hydrothermal fluid corroded type‐3, forming REE–Nb‐poor zircon (type‐4). Niobium and REE were no longer stable in the zircon structure and crystallized as fergusonite around the REE–Nb‐leached zircon (type‐4); (v) type‐5 zircon is formed by the more CO3‐rich hydrothermal alteration of type‐4 zircon, suggested by the fact that type‐4 and type‐5 zircon grains are often included in ankerite. Type‐3 to type‐5 zircon grains at the Nechalacho REE deposit were continuously formed by leaching and/or dissolution of type‐2 zircon in the presence of F‐ and/or CO3‐rich hydrothermal fluid. These mineral associations indicate that three representative hydrothermal stages were present and related to HFSE enrichment in the Nechalacho REE deposit: (i) F‐rich hydrothermal stage caused the crystallization of REE–Nb‐rich zircon (type‐2 rim and type‐3), with abundant formation of phlogopite and fluorite; (ii) F‐ and CO3‐rich hydrothermal stage led to the replacement of a part of REE–Nb–F‐rich zircon by REE fluorocarbonate; and (iii) CO3‐rich hydrothermal stage resulted in crystallization of the REE–Nb–F‐poor zircon and fergusonite, with ankerite. REE and Nb in hydrothermal fluid at the Nechalacho REE deposit were finally concentrated into fergusonite by way of REE–Nb–F‐rich zircon in the hydrothermally altered units.  相似文献   
82.
The aim of this study was to evaluate total mercury concentration and its lithogenic and exogenic fractions in some calcareous soils of western Iran, where water contamination and bioaccumulation of mercury have been reported in the bottomland’s reservoir. In particular, we investigated soil physico-chemical properties and weathering conditions related to lithogenic and exogenic fractions of mercury for two groups of calcareous soils with a known comparative pedological evolution and weathering condition that was evident in the presence or absence of underlying layers of accumulated clay. Our results showed that the total mercury content of the studied soils ranged from 45.40 to 830.36 with a mean of 486.81 μg kg?1. Furthermore, calculation of mercury fractions revealed that lithogenic and exogenic fractions vary slightly according to the three reference elements (Fe, U and Nb) used in the calculations for the two groups of studied soils. The results also illustrated that most of the mercury content is of exogenic origin; therefore, total mercury variations are closely related to the content of exogenic mercury, while the lithogenic fraction exhibited no relationship with total mercury concentration. Moreover, application of the weathering indexes of Parker and the CaO/ZrO2 molar ratio supported the dependence of lithogenic mercury accumulation on weathering intensity in the studied calcareous soils. However, the significance of this relationship is stronger for more weathered calcareous soils; in such cases, fine-particle fractions are more developed, which encourages carrier phases such as organic materials and iron oxyhydroxides to become involved in more efficient fixation of mercury. Nevertheless, the formation of underlying layers of accumulated clay, i.e. argillic horizons, may restrain fixation of exogenic mercury by limiting its atmospheric input.  相似文献   
83.
84.
85.
The Fukuoka District Meteorological Observatory recently logged three possible deep low-frequency earthquakes (LFEs) beneath eastern Kyushu, Japan, a region in which LFEs and low-frequency tremors have never before been identified. To assess these data, we analyzed band-pass filtered velocity seismograms and relocated LFEs and regular earthquakes using the double-difference method. The results strongly suggest that the three events were authentic LFEs, each at a depth of about 50 km. We also performed relocation analysis on LFEs recorded beneath the Kii Peninsula and found that these LFEs occurred near the northwest-dipping plate interface at depths of approximately 29–38 km. These results indicate that LFEs in southwest Japan occur near the upper surface of the subducting Philippine Sea (PHS) plate. To investigate the origin of regional differences in the occurrence frequency of LFEs in western Shikoku, the Kii Peninsula, and eastern Kyushu, we calculated temperature distributions associated with PHS plate subduction. Then, using the calculated thermal structures and a phase diagram of water dehydration for oceanic basalt, the water dehydration rate (wt.%/km), which was newly defined in this study, was determined to be 0.19, 0.12, and 0.08 in western Shikoku, the Kii Peninsula, and eastern Kyushu, respectively; that is, the region beneath eastern Kyushu has the lowest water dehydration rate value. Considering that the Kyushu–Palau Ridge that is subducting beneath eastern Kyushu is composed of tonalite, which is low in hydrous minerals, this finding suggests that the regionality may be related to the amount of water dehydration associated with subduction of the PHS plate and/or differences in LFE depths. Notable dehydration reactions take place beneath western Shikoku and the Kii Peninsula, where the depth ranges for dehydration estimated by thermal modeling agree well with those for the relocated LFEs. The temperature range in which LFEs occur in these regions is estimated to be 400–500 °C.  相似文献   
86.
87.
88.
Under strong surface wind forcing during winter, direct current observations in the northern Sea of Japan show the existence of strong near-inertial currents in the deep water that is characterized by the extremely homogeneous vertical structures of temperature and salinity. However, the mechanism generating internal waves in the deep water of the northern Sea of Japan has not been well understood. In this study, to clarify the dynamical link between the surface wind forcing and near-inertial currents in the deep water of the northern Sea of Japan, we drive a general circulation model taking into account realistic wind stress, ocean bottom and land topography. In the northern Sea of Japan, the numerical results show that vertically coherent horizontal currents with a speed of ~ 0.05 m s?1 are excited throughout the homogeneous deep water. A two-layer model successfully reproduces the pattern of the horizontal current velocities shown by the general circulation model, indicating that internal waves emanate westward from the northwestern coast of Japan through coastal adjustment to the strong wind forcing event and, while propagating into the ocean interior, they excite evanescent near-inertial response throughout the lower layer below the interface.  相似文献   
89.
We conducted hydrographic observations ten times in the Tsushima Strait to reveal seasonal variations of horizontal material transports such as of heat, freshwater, chlorophyll a, and dissolved inorganic nitrogen (DIN) and phosphorus (DIP) through the eastern channel of the Tsushima Strait (ECTS). The volume, freshwater, and heat transport results are of nearly the same order as results reported in previous studies. The annual mean DIN and DIP transports of 3.59 kmol/s and 0.29 kmol/s are large relative to those of the Changjiang and the Taiwan Strait and are horizontally transported through the ECTS. Nutrient transports are high in July–August and October and low in April and November. Increased nutrient transports in July–August and October are due to the appearance of a cold saline water mass in the bottom layer of the ECTS. Changes in DIN transports in summer and autumn, which account for two-thirds of the total annual DIN transport, would have a large effect on the nitrogen budget and biological productivity in the Tsushima Warm Current region.  相似文献   
90.
Our analysis of the last three decades of retrospective data of vertical distributions and size composition of chlorophyll-a (Chl-a) over the western North Pacific has revealed significant changes of three indices related to Chl-a during summer season, as follows: (1) decreasing linear trend of the proportion of Chl-a in surface layer to that of the whole water column by 0.4 and 2.3% year−1 in the subtropical area along 137°E (STA137) during 1972 to 1997 and in the Kuroshio Extension area along 175°E (KEA175) during 1990 to 2001; (2) increasing linear trend of the depth of subsurface Chl-a maximum (DCM) by 0.4 and 2.6 m year−1 in STA137 and KEA175; and (3) decreasing linear trend of larger-size Chl-a (>3 μm) by 0.1 and 2.5% year−1 in STA137 and KEA175, respectively. Water density (σ θ ) at 75 m depth had also decreased by 0.006 and 0.05 year−1 in STA137 and KEA175, respectively. The ratio of biogenic opal to biogenic CaCO3 in the sinking flux decreased by 0.015 year−1 in the subtropical region from 1997 to 2005. These findings may indicate that the subsurface chlorophyll maximum is deepening and larger phytoplankton such as diatoms has been decreasing during the past decade, associated with the decreasing density of surface water caused by warming in the western North Pacific, especially in the summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号