首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   1篇
测绘学   1篇
大气科学   5篇
地球物理   7篇
地质学   3篇
天文学   29篇
自然地理   2篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2002年   1篇
  1999年   2篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1984年   1篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
41.
A galaxy model with a satellite companion is used to study the character of motion for stars moving in the xy plane. It is observed that a large part of the phase plane is covered by chaotic orbits. The percentage of chaotic orbits increases when the galaxy has a dense nucleus of massMn. The presence of the dense nucleus also increases the stellar velocities near the center of the galaxy. For small values of the distance R between the two bodies, low energy stars display a chaotic region near the centre of the galaxy, when the dense nucleus is present, while for larger values of R the motion in active galaxies is regular for low energy stars. Our results suggest that in galaxies with a satellite companion, the chaotic character of motion is not only a result of galactic interaction but also a result caused by the dense nucleus. Theoretical arguments are used to support the numerical outcomes. We follow the evolution of the galaxy, as mass is transported adiabatically from the disk to the nucleus. Our numerical results are in satisfactory agreement with observational data from M51‐type binary galaxies (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
42.
A new formula for the gravitational potential for spheroidal systems is proposed, and is applied to the galactic system. The applied model consists of a disk, a nucleus and a massive halo. Although this model is not quite so accurate as those produced by the superposition of large numbers of simple spheroids, it has the important advantage of retaining analytic simplicity for its acceleration formulae, thereby producing significant economies for orbit computations. As better observational data become available, the method can be readily expanded.  相似文献   
43.
The annual nature of organic laminations in the sediment from a small lake, Lampellonjärvi (61°04'N; 25°04'E), was determined. The core was obtained using an in situ freezing method and the laminations were checked by a detailed microscopical analysis of adhesive tape preparations. A series of six radiocarbon dates were obtained for levels in the core which had previously been dated by means of varve counts to ages between A.D. 182 and AD. 1513. The radiocarbon dates were between 547 and 1525 years older. Two additional 14C dates from the lower part of the same profile (ca. 1880 B.C. and ca. 3100 B.C.), however, gave expected results. Erosion of old organic terrestrial material due to agricultural activity in the surroundings of the lake was assumed to have been the cause of abnormally old radiocarbon ages. Dates from the pre-agricultural period had a deviation from varve years similar to the difference between tree rings, historical documents and radiocarbon dating recorded in other studies.  相似文献   
44.
Scattering theory, a form of perturbation theory, is a framework from within which time‐lapse seismic reflection methods can be derived and understood. It leads to expressions relating baseline and monitoring data and Earth properties, focusing on differences between these quantities as it does so. The baseline medium is, in the language of scattering theory, the reference medium and the monitoring medium is the perturbed medium. The general scattering relationship between monitoring data, baseline data, and time‐lapse Earth property changes is likely too complex to be tractable. However, there are special cases that can be analysed for physical insight. Two of these cases coincide with recognizable areas of applied reflection seismology: amplitude versus offset modelling/inversion, and imaging. The main result of this paper is a demonstration that time‐lapse difference amplitude versus offset modelling, and time‐lapse difference data imaging, emerge from a single theoretical framework. The time‐lapse amplitude versus offset case is considered first. We constrain the general time‐lapse scattering problem to correspond with a single immobile interface that separates a static overburden from a target medium whose properties undergo time‐lapse changes. The scattering solutions contain difference‐amplitude versus offset expressions that (although presently acoustic) resemble the expressions of Landro ( 2001 ). In addition, however, they contain non‐linear corrective terms whose importance becomes significant as the contrasts across the interface grow. The difference‐amplitude versus offset case is exemplified with two parameter acoustic (bulk modulus and density) and anacoustic (P‐wave velocity and quality factor Q) examples. The time‐lapse difference data imaging case is considered next. Instead of constraining the structure of the Earth volume as in the amplitude versus offset case, we instead make a small‐contrast assumption, namely that the time‐lapse variations are small enough that we may disregard contributions from beyond first order. An initial analysis, in which the case of a single mobile boundary is examined in 1D, justifies the use of a particular imaging algorithm applied directly to difference data shot records. This algorithm, a least‐squares, shot‐profile imaging method, is additionally capable of supporting a range of regularization techniques. Synthetic examples verify the applicability of linearized imaging methods of the difference image formation under ideal conditions.  相似文献   
45.
Three groups of galactic mass models, each consisting of nine inhomogeneous spheroids of two kinds are described, according to three adopted values of the total density near the Sun: 0.10, 0.15 and 0.20 M pc–3. Approximately 20% of the total mass of each model is in the halo, constructed to adequately fit recent RR Lyrae star observations. It is shown that the maxima found in the RR Lyrae star densities towards the galactic axis (Plaut, 1970) should not be interpreted as being associated with the galactic nucleus, but as the result of the greater decrease in density with increasingz over the increase in density as the galactic axis is approached. Even at the low galactic latitude of 5° (l=0°), this effect causes a 0.5 kpc correction to the distance to the galactic centre. A basic model for kpc, km s–1, M pc–3 is first constructed, mainly to satisfy structural conditions near the sun and in the halo. An attempt to optimize the basic model is made by scaling it so as to retain constant density and angular velocity near the sun, and to best fit kinematic data, including the recent re-examination of the 21-cm data of Simonson and Mader (1972). No unknown matter is required in the models, in accordance with the results of Weistrop (1972b), and, as pointed out earlier (Innanen, 1966b) the faintM-stars must be in a highly flattened spheroid. The optimizing indicates that an adequate fit to kinematics can be achieved for km s–1. More detailed results are tabulated for a representative model for which . Two new galactic density functions are discussed in the Appendix.  相似文献   
46.
Tuorla Observatory, University of Turku  相似文献   
47.
Introduction     
Seven algorithms are investigated for integrating stellar orbits in axisymmetric and time-independent galactic models. We find that for this purpose, impressive gains over older methods are possible with higher order Runge-Kutta methods and variable order methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号