首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   7篇
测绘学   46篇
大气科学   33篇
地球物理   55篇
地质学   112篇
海洋学   26篇
天文学   124篇
综合类   1篇
自然地理   14篇
  2022年   6篇
  2021年   10篇
  2020年   4篇
  2019年   5篇
  2018年   18篇
  2017年   12篇
  2016年   21篇
  2015年   12篇
  2014年   16篇
  2013年   27篇
  2012年   23篇
  2011年   24篇
  2010年   12篇
  2009年   16篇
  2008年   20篇
  2007年   16篇
  2006年   21篇
  2005年   16篇
  2004年   12篇
  2003年   13篇
  2002年   9篇
  2001年   5篇
  2000年   10篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
321.
We present spectropolarimetric analysis of umbral dots and a light bridge fragment that show dark lanes in G -band images. Umbral dots show upflow as well as associated positive Stokes V area asymmetry in their central parts. Larger umbral dots show downflow patches in their surrounding parts that are associated with negative Stokes V area asymmetry. Umbral dots show weaker magnetic field in central part and higher magnetic field in peripheral area. Umbral fine structures are much better visible in total circularly polarized light than in continuum intensity. Umbral dots show a temperature deficit above dark lanes. The magnetic field inclination shows a cusp structure above umbral dots and a light bridge fragment. We compare our observational findings with 3D magnetohydrodynamic simulations.  相似文献   
322.
Kiran Asher 《Geoforum》2009,40(3):292-302
In this paper, we explore how ordenamiento territorial, a territorial zoning policy in the 1991 Colombian Constitution remakes nature and helps constitute the state in the “economically backward” but “biodiversity rich” Pacific lowlands region. We draw on Gramscian insights on hegemony and the importance of conjunctures to trace how changes in the new Constitution and global biogeopolitics reconfigure nature and state power through the mandates of sustainable development, economic growth, and the conservation of biological and cultural diversity. Finally, we contribute to the literature on political ecology by showing how the political power of the state, nature, and capital are interwoven materially and symbolically in complex and contradictory ways.  相似文献   
323.
Both finite-element and finite-difference numerical models are applied to simulate storm surges and associated currents generated by tropical cyclones that struck the coast of Andhra Pradesh, located on the east coast of India. During a cyclone, the total water level at any location on the coast is made up of the storm surge, surge–wind wave interaction and the tide. The advanced circulation two-dimensional depth-integrated (ADCIRC-2DDI) model based on finite-element formulation and the two-dimensional finite-difference model of storm surges developed at IIT Delhi, hereafter referred as IITD storm surge model, are used. These models are driven by astronomical tides at the open ocean boundary and cyclonic asymmetric winds over the surface of the computational domain. Comparison of model simulated sea-surface elevations with coarse and finer spatial resolutions suggests that the grid resolution near the coast is very crucial for accurate determination of the surges in addition to the local bathymetry. The model underpredicts surges, and the peak surge location shifts more to the right of the landfall as the spatial resolution of the model becomes coarser. The numerical experiments also demonstrate that the ADCIRC model is robust over the IITD storm surge model for surge computations as the coastline is better represented in the former.  相似文献   
324.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   
325.
The chemical quality of groundwater of western Haryana, India was assessed for its suitability for drinking purposes. A total of 275 water samples were collected from deep aquifer based hand-pumps situated in 37 different villages/towns of Bhiwani region. The water samples were analyzed for different physico-chemical properties, e.g., pH, total dissolved solids (TDS), total harness (TH), total alkalinity (TA), calcium, magnesium, carbonate, bicarbonate, sulphate, chloride and fluoride concentrations. In this study, the average TDS content was greater ranging 1,692 (Bhiwani block) to 2,560 mg l−1 (Siwani block), and other important parameters of water, e.g., TA (442–1,232 mg l−1), TH (437–864 mg l−1) and bicarbonate (554–672 mg l−1), were also higher than maximum permissible limit by WHO or BIS. The fluoride appeared as a major problem of safe drinking water in this region. We recorded greater fluoride concentration, i.e., 86.0 mg l−1 from Motipura village that is highest fluoride level ever recorded for Haryana state. The average fluoride concentration ranged between 7.1 and 0.8 mg l−1 in different blocks of western Haryana. On the basis of fluoride concentration, Siwani block showed the maximum number of water samples (84% of total collected samples) unsuitable for drinking purposes (containing fluoride >1.5 mg l−1) followed by Charki Dadri block (58%), Bhiwani block (52%), Bawani Khera block (33%) and Loharu block (14%). This study clearly suggest that some health deteriorating chemicals in drinking water were at dangerous level and; therefore, water quality could be a major health threat for local residents of western Haryana. The high fluoride level in drinking water has posed some serious dental health risks in local residents.  相似文献   
326.
Samples of rain water were collected during monsoon season (June to September) of 2006 and 2007 at Hudegadde, a rural site located in an ecological sensitive area of Western Ghats. The collected samples were analyzed for pH, conductivity and major ions. At this site, rainwater pH varied from 4.20 to 7.39 with 5.65 as volume weighed mean. The observed mean was slightly lower than the average pH reported at most of the Indian continental sites. Monthly variation showed that average pH of rain water was the lowest during September (end of monsoon) and the highest during July (peak of monsoon). Overall, marine sources had dominating influence at this site. However, significant influence of anthropogenic and crustal sources from local as well as inter-continental regions was also noticed. As compared to NO3, higher concentration of SO42− was noticed which might be due to contribution from industrial activities responsible for SO2 emission. At this site, influence of five types of airmass trajectories was noticed i.e. i) C.I.O. (Central part of Indian Ocean)-when air masses blown from Maldives and nearby region of central Indian ocean. These airmasses had higher concentrations of nss Ca2+ which did not show any adverse impact on the pH; ii) N.W.I.O.(North-West Indian Ocean)-when airmasses travelled from oceanic region close to north-east Africa. These airmassses had higher concentrations of nss sulphate and nitrate and gave rise to acid rain; iii) S.W.I.O. (South -West Indian Ocean)- when airmasses came from southern part of Indian ocean (close to Mauritius). During these airmasses, rain water samples had almost equal ratio of nss SO42− and nss Ca2+ similar to N.W.I.O but very low NO3 ; iv) Gulf-when airmasses were observed coming from Gulf region. Although these airmasses contributed only 2% of the total number of samples but carried high amount of nss SO42− which gave rise to acid rain. The second lowest pH was observed during these airmasses which might be due to very high nssSO42−/nssCa2+ ratios; v) N.W.I.O. + S.W.I.C. (North-West Indian Ocean+South-West Indian Continental)- when airmasses originated from north-west Indian Ocean travelling towards south continental part of India and then arriving to the site. During these airmasses, samples showed typical influence of urban activities having high concentrations of nss SO42− and NO3 leading to the lowest pH of rain water.  相似文献   
327.
A key question in studies of the potential for reducing uncertainty in climate change projections is how additional observations may be used to constrain models. We examine the case of ocean carbon cycle models. The reliability of ocean models in projecting oceanic CO2 uptake is fundamentally dependent on their skills in simulating ocean circulation and air–sea gas exchange. In this study we demonstrate how a model simulation of multiple tracers and utilization of a variety of observational data help us to obtain additional information about the parameterization of ocean circulation and air–sea gas exchange, relative to approaches that use only a single tracer. The benefit of using multiple tracers is based on the fact that individual tracer holds unique information with regard to ocean mixing, circulation, and air–sea gas exchange. In a previous modeling study, we have shown that the simulation of radiocarbon enables us to identify the importance of parameterizing sub-grid scale ocean mixing processes in terms of diffusive mixing along constant density surface (isopycnal mixing) and the inclusion of the effect of mesoscale eddies. In this study we show that the simulation of phosphate, a major macronutrient in the ocean, helps us to detect a weak isopycnal mixing in the upper ocean that does not show up in the radiocarbon simulation. We also show that the simulation of chlorofluorocarbons (CFCs) reveals excessive upwelling in the Southern Ocean, which is also not apparent in radiocarbon simulations. Furthermore, the updated ocean inventory data of man-made radiocarbon produced by nuclear tests (bomb 14C) enable us to recalibrate the rate of air–sea gas exchange. The progressive modifications made in the model based on the simulation of additional tracers and utilization of updated observational data overall improve the model’s ability to simulate ocean circulation and air–sea gas exchange, particularly in the Southern Ocean, and has great consequence for projected CO2 uptake. Simulated global ocean uptake of anthropogenic CO2 from pre-industrial time to the present day by both previous and updated models are within the range of observational-based estimates, but with substantial regional difference, especially in the Southern Ocean. By year 2100, the updated model estimated CO2 uptake are 531 and 133 PgC (1PgC?=?1015 gram carbon) for the global and Southern Ocean respectively, whereas the previous version model estimated values are 540 and 190 PgC.  相似文献   
328.
Seven year data of hourly surface ozone concentration is analyzed to study diurnal cycle, trends, excess of ozone levels above threshold value and cumulative ozone exposure indices at a tropical megacity, Delhi. The ozone levels clearly exhibit a diurnal cycle, similar to what has been found in other urban places. A sharp increase in the ozone levels during forenoon and a sharp decrease in the early afternoon can be observed. The average rate of increase in ozone concentration between 09 and 12 h has been observed to be 7.1 ppb h−1. We find that the daily maximum and daytime 8-h (10–17 h) ozone levels are increasing at a rate of about 1.7 (± 0.7) and 1.3 (± 0.56) ppb y−1, respectively. The directives on ozone pollution in ambient air provided by United Nations Economic Commission for Europe and World Health Organization for vegetation (AOT40) and human health protection were used to assess the air quality. The present surface ozone levels in the city are high enough to exceed “Critical Levels” which are considered to be safe for human health, vegetation and forest. The human health threshold was exceeded for up to ~45 days per year. The AOT40 (Accumulated exposure Over a Threshold of 40 ppb) threshold was exceeded significantly during winter (D-J-F) and pre-monsoon (M-A-M) (Rabi crop growing season) season in India. Translating AOT40 exceedances during pre-monsoon into relative yield loss we estimate yield loss of 22.7%, 22.5%, 16.3% and 5.5% for wheat, cotton, soybean and rice, respectively.  相似文献   
329.
330.
An assessment of regional vulnerability of rice to climate change in India   总被引:1,自引:0,他引:1  
A simulation analysis was carried out using the InfoCrop-rice model to quantify impacts and adaptation gains, as well as to identify vulnerable regions for irrigated and rain fed rice cultivation in future climates in India. Climates in A1b, A2, B1 and B2 emission scenarios as per a global climate model (MIROC3.2.HI) and a regional climate model (PRECIS) were considered for the study. On an aggregated scale, the mean of all emission scenarios indicate that climate change is likely to reduce irrigated rice yields by ~4 % in 2020 (2010–2039), ~7 % in 2050 (2040–2069), and by ~10 % in 2080 (2070–2099) climate scenarios. On the other hand, rainfed rice yields in India are likely to be reduced by ~6 % in the 2020 scenario, but in the 2050 and 2080 scenarios they are projected to decrease only marginally (<2.5 %). However, spatial variations exist for the magnitude of the impact, with some regions likely to be affected more than others. Adaptation strategies comprising agronomical management can offset negative impacts in the near future—particularly in rainfed conditions—but in the longer run, developing suitable varieties coupled with improved and efficient crop husbandry will become essential. For irrigated rice crop, genotypic and agronomic improvements will become crucial; while for rainfed conditions, improved management and additional fertilizers will be needed. Basically climate change is likely to exhibit three types of impacts on rice crop: i) regions that are adversely affected by climate change can gain in net productivity with adaptation; ii) regions that are adversely affected will still remain vulnerable despite adaptation gains; and iii) rainfed regions (with currently low rainfall) that are likely to gain due to increase in rainfall can further benefit by adaptation. Regions falling in the vulnerable category even after suggested adaptation to climate change will require more intensive, specific and innovative adaptation options. The present analysis indicates the possibility of substantial improvement in yields with efficient utilization of inputs and adoption of improved varieties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号