首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24935篇
  免费   195篇
  国内免费   925篇
测绘学   1423篇
大气科学   2057篇
地球物理   4611篇
地质学   11799篇
海洋学   1050篇
天文学   1708篇
综合类   2161篇
自然地理   1246篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   9篇
  2020年   13篇
  2019年   14篇
  2018年   4767篇
  2017年   4047篇
  2016年   2593篇
  2015年   248篇
  2014年   109篇
  2013年   67篇
  2012年   1019篇
  2011年   2768篇
  2010年   2038篇
  2009年   2359篇
  2008年   1923篇
  2007年   2388篇
  2006年   86篇
  2005年   229篇
  2004年   422篇
  2003年   417篇
  2002年   278篇
  2001年   57篇
  2000年   57篇
  1999年   20篇
  1998年   24篇
  1997年   9篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1981年   22篇
  1980年   19篇
  1979年   1篇
  1978年   1篇
  1976年   7篇
  1975年   1篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
151.
The upper layer (above 140 m depth) temperature in the western Philippine Sea near Taiwan was sampled using a coastal monitoring buoy (CMB) with 15 attached thermistors during July 28–August 7, 2005. The data were collected every 10 min at 1, 3, 5, 10, 15, and 20 m using the CMB sensors, and every 15 sec at 15 different depths between 25 m and 140 m. Internal waves and solitons were identified from the time-depth plot of the temperature field. Without the internal waves and solitons, the power spectra, structure functions, and singular measures (representing the intermittency) of temperature field satisfy the power law with multi-scale characteristics at all depths. The internal waves do not change the basic characteristics of the multifractal structure. However, the internal solitons change the power exponent of the power spectra drastically, especially in the low wave number domain; they also break down the power law of the structure function and increase the intermittency parameter. The physical mechanisms causing these different effects need to be explored further.  相似文献   
152.
A new method is presented to process and correct full-depth current velocity data obtained from a lowered acoustic Doppler current profiler (LADCP). The analysis shows that, except near the surface, the echo intensity of a reflected sound pulse is closely correlated with the magnitude of the difference in vertical shear of velocity between downcast and upcast, indicating an error in velocity shear. The present method features the use of echo intensity for the correction of velocity shear. The correction values are determined as to fit LADCP velocity to shipboard ADCP (SADCP) and LADCP bottom-tracked velocities. The method is as follows. Initially, a profile of velocity relative to the sea surface is obtained by integrating vertical shears of velocity after low-quality data are rejected. Second, the relative velocity is fitted to the velocity at 100–800 dbar measured by SADCP to obtain an “absolute” velocity profile. Third, the velocity shear is corrected using the relationship between the errors in velocity shears and echo intensity, in order to adjust the velocity at sea bottom to the bottom-tracked velocity measured by LADCP. Finally, the velocity profile is obtained from the SADCP-fitted velocity at depths less than 800 dbar and the corrected velocity shear at depths greater than 800 dbar. This method is valid for a full-depth LADCP cast throughout which the echo intensity is relatively high (greater than 75 dB in the present analysis). Although the processed velocity may include errors of 1–2 cm s−1, this method produced qualitatively good current structures in the Northeast Pacific Basin that were consistent with the deep current structures inferred from silicate distribution, and the averaged velocities were significantly different from those calculated by the Visbeck (2002) method.  相似文献   
153.
Mesoscale features in the eastward extension of the Kuroshio were investigated using assimilation of TOPEX/POSEIDON (T/P) data into a three-layer quasi-geostrophic model. The T/P data exhibited an elongated state of the southern recirculation gyre in 1993–95 and 1997, between whose two periods the gyre had a contracted state in 1995–96. A few stationary eddies were located in the southern gyre during the contracted state. The baroclinic instability, which was indicated by the phase shift from the uppermost-to the lowest-layer anomalies toward the downstream side, was evident near the Kuroshio Extension (KE) path. Since the instability never appeared in the artificial model without bottom topography, the topographic barrier for the eastward flow in the lowest layer was a necessary condition for the instability. The instability synchronized with the transition in the western region of the KE axis from the elongated to the contracted states. This evolution was interpreted as if the baroclinic instability played some part in the KE states and was a trigger for the transition from the elongated to the contracted states.  相似文献   
154.
Following our previous study (Sugimoto and Hanawa, 2005b), we further investigate the reason why reemergence of winter sea surface temperature anomalies does not occur in the North Pacific eastern subtropical mode water (NPESTMW) area, despite its occurrence in the North Pacific subtropical mode water and North Pacific central mode water areas. We use vertical temperature and salinity profiles of the World Ocean Circulation Experiment Hydrographic Program and Argo floats with high vertical and temporal resolution, together with heat flux data through the sea surface. We point out first that one of the causes for non-occurrence of reemergence is that the thickness of NPESTMW is very thin. In addition to this basic cause, two major reasons are found: a vigorous mixing in the lower portion of NPESTMW and less heat input from the atmosphere in the warming season. Since, in the lower portion of NPESTMW and deeper, the stratification is favorable for salt-finger type convection to occur compared with the other mode water areas, vigorous mixing takes place. This is confirmed by both a large Turner Angle there and the existence of staircase structures in vertical temperature and salinity profiles. From the viewpoint of heat input, the NPESTMW area gradually gains heat in the warming season compared with other mode water areas. As a result, NPESTMW cannot be capped so quickly by the shallow summer mixed layer, and water properties of NPESTMW are to be gradually modified, even in the upper portion.  相似文献   
155.
A geomorphological and statistical analysis of slope canyons from the northern KwaZulu-Natal continental margin is documented and compared with submarine canyons from the Atlantic margin of the USA. The northern KwaZulu-Natal margin is characterized by increasing upslope relief, concave slope-gradient profiles and features related to upslope growth of the canyon forms. Discounting slope-gradient profile, this morphology is strikingly similar to canyon systems of the New Jersey slope. Several phases of canyon incision indicate that downslope erosion is also an important factor in the evolution of the northern KwaZulu-Natal canyon systems. Despite the strong similarities between the northern KwaZulu-Natal and New Jersey slope-canyon systems, key differences are evident: (1) the concavity of the northern KwaZulu-Natal slope, contrasting with the ∼linear New Jersey slope; (2) the relative isolation of the northern KwaZulu-Natal canyons, rather than the dense clustering of the New Jersey canyons; and (3) the absence of strongly shelf-breaching canyons along the northern KwaZulu-Natal margin. In comparison with the New Jersey margin, we surmise a more youthful stage of canyon evolution, a result of either the canyons themselves being younger or the formative processes being less active. Less complicated patterns of erosion resulting from reduced sediment availability have developed in northern KwaZulu-Natal. The reduction in slope concavity on the New Jersey margin may be the result of grading of the upper slope by intensive headward erosion, a process more subdued—or less evident—on the KwaZulu-Natal margin.  相似文献   
156.
We present a method, based on the concept of age and residence time, to study the water renewal in a semi-enclosed domain. We split the water of this domain into different water types. The initial water is the water initially present in the semi-enclosed domain. The renewing water is defined as the water entering the domain of interest. Several renewing water types may be considered depending on their origin. We present the equations for computing the age and the residence time of a certain water type. These timescales are of use to understand the rate at which the water renewal takes place. Computing these timescales can be achieved at an acceptable extra computer cost.The above-mentioned method is applied to study the renewal of epilimnion (i.e. the surface layer) water in Lake Tanganyika. We have built a finite element reduced-gravity model modified to take into account the water exchange between the epilimnion and the hypolimnion (i.e. the bottom layer), the water supply from precipitation and incoming rivers, and the water loss from evaporation and the only outgoing river. With our water renewal diagnoses, we show that the only significant process in the renewal of epilimnion water in Lake Tanganyika is the water exchange between the epilimnion and the hypolimnion, other phenomena being negligible.  相似文献   
157.
The effects of scattering and resonance on the energy dissipation of an internal tide were investigated using a two-dimensional model which is a reassembled version of the theoretical generation model devised by Rattray et al. (1969) for internal tide. The basic character of the scattering process at the step bottom was first investigated with a wide shelf model. When the internal wave incited from a deep region (Region II) into the shallow shelf region (Region I), a passing wave into the shallow region, a reflected wave into the deep region, and a beam-like wave, i.e. a scattered wave (SW), emanated at the step bottom. The SW, which consists of the superposition of numerous internal modes, propagated upward/downward into both regions. The general properties of the SW were well expressed around the shelf edge, even in the present model with viscosity effect. The amplitude of the SW decreased dramatically when the depth of the velocity maximum of the incident internal wave in Region II corresponded with the depth of the shelf edge. In the narrow shelf model, where the decay distance of the internal wave in Region I is longer than the shelf width, the incident internal wave reflected at the coast to form a standing wave. When the internal wave in Region I is enhanced by the resonance, the energy of the SW in Region II is also intensified. Furthermore, the energy of the modes in Region II predominated when the velocity maximum is identical to that of the dominant mode in Region I. These results suggest that the spatial scale of shelf region is a very important factor governing the energy dissipation of the internal tide through reflection and scattering in a narrow shelf.  相似文献   
158.
During time-series observations in Sagami Bay, Japan, the concentration of dissolved dimethylsulfoniopropionate (DMSPd), a precursor of dimethylsulfide (DMS), was negatively correlated with salinity. In the laboratory, low-salinity shock reduced DMS production rates of the natural bacterial community and induced rapid DMSP release from a dinophyte, Heterocapsa triquetra, suggesting that low-salinity shock reduced DMSPd consumption but enhanced DMSPd production, which agrees with the negative correlation between DMSPd and salinity observed in Sagami bay. In addition, low-salinity shock did not affect DMSP lyase activity of H. triquetra. Low-salinity shock would increase the contribution from algae in DMS production, leading to an increase in potential DMS productivity in the environment.  相似文献   
159.
The turbulent motions responsible for ocean mixing occur on scales much smaller than those resolved in numerical simulations of oceanic flows. Great progress has been made in understanding the sources of energy for mixing, the mechanisms, and the rates. On the other hand, we still do not have adequate answers to first order questions such as the extent to which the thermohaline circulation of the ocean, and hence the earth's climate, is sensitive to the present mixing rates in the ocean interior. Internal waves, generated by either wind or flow over topography, appear to be the principle cause of mixing. Mean and eddy flows over topography generate internal lee waves, while tidal flows over topography generate internal tides. The relative importance of these different internal wave sources is unknown. There are also great uncertainties about the spatial and temporal variation of mixing. Calculations of internal tide generation are becoming increasingly robust, but we do not know enough about the subsequent behavior of internal tides and their eventual breakdown into turbulence. It does seem, however, that most internal tide energy flux is radiated away from generation sites as low modes that propagate over basin scales. The mechanisms of wave-wave interaction and topographic scattering both act to transfer wave energy from low modes to smaller dissipative scales. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
160.
Algorithm for HF radar vector current measurements   总被引:1,自引:0,他引:1  
A new algorithm is proposed, called the stream function method (SFM) for producing vector current maps from radial data measured by dual-site high frequency surface wave radar (HFSWR). In SFM, a scalar stream function is constructed under some oceanographic assumptions. The function describes the two-dimensional (2-D) ocean surface water motion and is used to obtain the distribution of vector currents. The performance of SFM is evaluated using simulated radial data, which demonstrates that SFM has advantages over typical vectorial combination methods (VCM) both in error acceptance and robustness, and excels another method based on least-squares fitting (LSF) in recovering the complicated current models. Furthermore, SFM is capable of providing the total currents based on radials from single-site radar. We also test the assumptions of horizontal non-divergence in the simulation. The new algorithm is applied to the field experiment data of Wuhan University’s ocean state measuring and analyzing radar (OSMAR), collected in the coastal East China Sea during April 11–17, 2004. Quantitative comparisons are given between radar results by three current algorithms and in-situ current meter measurements. Preliminary analysis of the vertical current shear is given based on the current meter measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号