首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   3篇
  国内免费   9篇
测绘学   2篇
大气科学   10篇
地球物理   64篇
地质学   45篇
海洋学   65篇
天文学   17篇
综合类   4篇
自然地理   23篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   12篇
  2015年   5篇
  2014年   11篇
  2013年   14篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   16篇
  2008年   10篇
  2007年   9篇
  2006年   13篇
  2005年   13篇
  2004年   7篇
  2003年   12篇
  2002年   4篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   9篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1961年   1篇
  1958年   1篇
  1937年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
141.
142.
Numerical simulation of impact cratering on granular material   总被引:1,自引:0,他引:1  
Koji Wada  Hiroki Senshu 《Icarus》2006,180(2):528-545
A new numerical code based on the Distinct Element Method (DEM) is developed to study the impact cratering processes on granular material. This code has a potential advantage to simulate the cratering process on granular material, since the movement of discrete particles can be treated. To show the physical plausibility of this code, we conduct 3-D numerical simulations of vertical impact into granular material targets that consist of 384,000 particles, and compare the results with those from experimental studies. It is shown that the excavation stage of cratering derived from experimental studies is represented well by our simulation: the size of the crater cavity, and the ejecta velocity and angle distributions are consistent with those obtained in laboratory experiments. The impact simulation code developed in this study is thus suggested to be useful for the analysis of the impact cratering process on granular material.  相似文献   
143.
Ocean plate stratigraphy (OPS) is essential to understanding accretionary wedges and complexes along convergent plate margins. Mélanges within accretionary wedges and complexes are the products of fragmentation and mixing processes during and following OPS accretion. A new term, ‘OPS mélange’, is proposed here for mélanges composed mostly of blocks of OPS with an argillaceous matrix, and for a mixture of mélanges of multiple origins with either broken or coherent formations. An OPS mélange results from the fragmentation and disruption of OPS, without admixing of other components. Three major types of OPS mélange can be distinguished on the basis of their components: turbidite type, chert–turbidite type, and limestone–basalt type. These three types potentially form similar mélanges, but they are derived from different parts of the OPS, depending on the level of the decollement surface. The concept of ‘OPS mélange’ can be applied to most of the mélanges in accretionary prisms and complexes worldwide. In addition, this proposal recognizes a distinction between processes of fragmentation and mixing of OPS components, and mixing of ophiolite components, the latter of which results in serpentinite mélanges, not OPS mélanges. Mélanges composed of OPS sequences occur worldwide. The recognition of OPS mélanges is a key aspect of understanding tectonic processes at convergent margins, which result in mélange formation in orogenic belts globally.  相似文献   
144.
Koji Fujita 《水文研究》2007,21(21):2892-2896
The impact of the timing of dust deposition on glacier runoff was evaluated using a glacier mass‐balance model with a newly improved scheme to track a dusted layer in a snow layer of a glacier. The lowering of surface albedo due to the dusted layer appearing leads to a drastic increase of glacier runoff even under the same meteorological conditions. Calculations of seasonal sensitivity, the relationship between dusted date and resulting runoff, have shown that dust deposition during a melting season might cause a drastic mass outflow from a glacier through changing the surface albedo during the melting season. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
145.
We estimated stored sediment and carbon during the Holocene for each layer of the Yahagi River Delta, central Japan and discussed the provenance of stored carbon. To estimate the bulk density and the carbon content of each layer, we collected two 30 m deep undisturbed cores. The volume of each layer was calculated using ArcView 3D analyst. Although the volume ratio of each layer to the total volume was calculated to be 9.5% for the top mud layer, 34.9% for the upper sand layer, 32.8% for the middle mud layer and 22.9% for the lower sand layer, the mass ratio of each layer to the total mass was calculated to be 8.5, 40.9, 25.2 and 25.4%, respectively, and the stored carbon ratio in each layer to the total stored carbon was 20.4, 4.7, 55.9 and 18.9%, respectively. These results suggest that the top mud and middle mud layers have a significant role as a place for carbon sequestration during postglacial time. Total stored carbon in the study area of only 92.1 km2 was estimated at 26 Tg C, which is equivalent to 0.003% of atmospheric carbon. This suggests that deltas on the globe have accumulated a massive amount of carbon during the evolution. The inorganic carbon ratio to total carbon reached more than 45% around the boundary between the middle mud and lower sand layers. The increasing trend in the Corg/Ntotal ratio accompanied with a decrease in δ13C from the bottom to the top horizon in the middle mud layer indicates a gradual increase in terrestrial organic matter contribution. The relative proportion of terrestrially derived materials decreases with increasing distance seaward.  相似文献   
146.
A new Local Ocean Tide Model, has been produced for the Exclusive Economic Zone (EEZ) of Malaysia, which incorporates some of the latest TOPEX/POSEIDON data for the years 1992 to 1998. Local tide gauge data are used as a comparison, along with another leading Global Ocean Tide Model, Ori96. The leading diurnal and semidiurnal constituents M2, S2, N2, K1, O1, P1 and Q1 are reproduced using TOPEX/POSEIDON Sea Surface Heights (SSH) in a response analysis type least squares derivation following Munk and Cartwright (1966).  相似文献   
147.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   
148.
To clarify the effect of a surface regolith layer on the formation of craters in bedrock, we conducted impact-cratering experiments on two-layered targets composed of a basalt block covered with a mortar layer. A nylon projectile was impacted on the targets at velocities of 2 and 4 km s?1, and we investigated the crater size formed on the basalt. The crater size decreased with increased mortar thickness and decreased projectile mass and impact velocity. The normalized crater volume, πV, of all the data was successfully scaled by the following exponential equation with a reduction length λ0: πV=b0πY-b1exp(-λ/λ0), where λ is the normalized thickness T/Lp, T and Lp are the mortar thickness and the projectile length, respectively, b0 and b1 are fitted parameters obtained for a homogeneous basalt target, 10?2.7±0.7 and ?1.4 ± 0.3, respectively, and λ0 is obtained to be 0.38 ± 0.03. This empirical equation showing the effect of the mortar layer was physically explained by an improved non-dimensional scaling parameter, πY1, defined by πY1=Y/(ρtup2), where up was the particle velocity of the mortar layer at the boundary between the mortar and the basalt. We performed the impact experiments to obtain the attenuation rate of the particle velocity in the mortar layer and derived the empirical equation of upvi=0.50exp-λ1.03, where vi is the impact velocity of the projectile. We propose a simple model for the crater formation on the basalt block that the surface mortar layer with the impact velocity of up collides on the surface of the basalt block, and we confirmed that this model could reproduce our empirical equation showing the effect of the surface layer on the crater volume of basalt.  相似文献   
149.
Due to the reduction and degradation of coastal areas in Japan by land reclamation and anthropogenic perturbations, from the point of view of conservation of the coastal environment, the restoration of Sargassum beds is essential. Between 1978 and 1991, 6400 ha of seagrass and seaweed beds have been lost along the Japanese coast, of which Sargassum beds were 22%. New techniques for Sargassum bed restoration are summarized based on three coastal engineering techniques. (1) Construction of shallow and gentle sloping bottom substrata have been shown to be effective for the reestablishment of 'management-free seagrass and Sargassum beds' on developed coasts. (2) Seeding or transplanting using artificial substratum for extension of nursery and fishing grounds around natural Sargassum beds. (3) Periodic transplanting of Sargassum plants using artificially produced seedlings is effective to produce niches to allow faunal re-colonization in severely polluted and sparsely vegetated area. However, prior to implementation, the suitability and limitations of these three techniques requires to be ascertained for effective Sargassum bed restoration.  相似文献   
150.
The direct injection of CO(2) in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field. Since the concentration of CO(2), which organisms experience in the ocean, changes with time, it is required to develop a biological impact model for the organisms against the unsteady change of CO(2) concentration. In general, the LC(50) concept is widely applied for testing a toxic agent for the acute mortality. Here, we regard the probit-transformed mortality as a linear function not only of the concentration of CO(2) but also of exposure time. A simple mathematical transform of the function gives a damage-accumulation mortality model for zooplankton. In this article, this model was validated by the mortality test of Metamphiascopsis hirsutus against the transient change of CO(2) concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号