首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   74篇
  国内免费   12篇
测绘学   16篇
大气科学   61篇
地球物理   311篇
地质学   348篇
海洋学   108篇
天文学   109篇
综合类   5篇
自然地理   67篇
  2024年   6篇
  2023年   8篇
  2022年   7篇
  2021年   26篇
  2020年   37篇
  2019年   37篇
  2018年   39篇
  2017年   41篇
  2016年   52篇
  2015年   41篇
  2014年   47篇
  2013年   55篇
  2012年   57篇
  2011年   63篇
  2010年   65篇
  2009年   54篇
  2008年   48篇
  2007年   45篇
  2006年   30篇
  2005年   34篇
  2004年   35篇
  2003年   23篇
  2002年   26篇
  2001年   16篇
  2000年   17篇
  1999年   11篇
  1998年   10篇
  1997年   12篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1973年   2篇
  1970年   1篇
  1967年   1篇
  1964年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有1025条查询结果,搜索用时 158 毫秒
191.
Over 180 springs emerge in the Panamint Range near Death Valley National Park, CA, yet, these springs have received very little hydrogeological attention despite their cultural, historical, and ecological importance. Here, we address the following questions: (1) which rock units support groundwater flow to springs in the Panamint Range, (2) what are the geochemical kinetics of these aquifers, and (3) and what are the residence times of these springs? All springs are at least partly supported by recharge in and flow through dolomitic units, namely, the Noonday Dolomite, Kingston Peak Formation, and Johnnie Formation. Thus, the geochemical composition of springs can largely be explained by dedolomitization: the dissolution of dolomite and gypsum with concurrent precipitation of calcite. However, interactions with hydrothermal deposits have likely influenced the geochemical composition of Thorndike Spring, Uppermost Spring, Hanaupah Canyon springs, and Trail Canyon springs. Faults are important controls on spring emergence. Seventeen of twenty-one sampled springs emerge at faults (13 emerge at low-angle detachment faults). On the eastern side of the Panamint Range, springs emerge where low-angle faults intersect nearly vertical Late Proterozoic, Cambrian, and Ordovician sedimentary units. These geologic units are not present on the western side of the Panamint Range. Instead, springs on the west side emerge where low-angle faults intersect Cenozoic breccias and fanglomerates. Mean residence times of springs range from 33 (±30) to 1,829 (±613) years. A total of 11 springs have relatively short mean residence times less than 500 years, whereas seven springs have mean residence times greater than 1,000 years. We infer that the Panamint Range springs are extremely vulnerable to climate change due to their dependence on local recharge, disconnection from regional groundwater flow (Death Valley Regional Flow System - DVRFS), and relatively short mean residence times as compared with springs that are supported by the DVRFS (e.g., springs in Ash Meadows National Wildlife Refuge). In fact, four springs were not flowing during this campaign, yet they were flowing in the 1990s and 2000s.  相似文献   
192.
Lake ice supports a range of socio‐economic and cultural activities including transportation and winter recreational actives. The influence of weather patterns on ice‐cover dynamics of temperate lakes requires further understanding for determining how changes in ice composition will impact ice safety and the range of ecosystem services provided by seasonal ice cover. An investigation of lake ice formation and decay for three lakes in Central Ontario, Canada, took place over the course of two winters, 2015–2016 and 2016–2017, through the use of outdoor digital cameras, a Shallow Water Ice Profiler (upward‐looking sonar), and weekly field measurements. Temperature fluctuations across 0°C promoted substantial early season white ice growth, with lesser amounts of black ice forming later in the season. Ice thickening processes observed were mainly through meltwater, or midwinter rain, refreezing on the ice surface. Snow redistribution was limited, with frequent melt events limiting the duration of fresh snow on the ice, leading to a fairly uniform distribution of white ice across the lakes in 2015–2016 (standard deviations week to week ranging from 3 to 5 cm), but with slightly more variability in 2016–2017 when more snow accumulated over the season (5 to 11 cm). White ice dominated the end‐of‐season ice composition for both seasons representing more than 70% of the total ice thickness, which is a stark contrast to Arctic lake ice that is composed mainly of black ice. This research has provided the first detailed lake ice processes and conditions from medium‐sized north‐temperate lakes and provided important information on temperate region lake ice characteristics that will enhance the understanding of the response of temperate lake ice to climate and provide insight on potential changes to more northern ice regimes under continued climate warming.  相似文献   
193.
Despite the widely held assumption that trees negatively affect the local water budget in densely planted tree plantations, we still lack a clear understanding of the underlying processes by which canopy cover influences local soil water dynamics in more open, humid tropical ecosystems. In this study, we propose a new conceptual model that uses a combination of stable isotope and soil moisture measurements throughout the soil profile to assess potential mechanisms by which evaporation (of surface soil water and of canopy‐intercepted rainfall) affects the relationship between surface soil water isotopic enrichment (lc‐excess) and soil water content. Our conceptual model was derived from soil water data collected under deciduous and evergreen plants in a shade grown coffee agroforestry system in Costa Rica. Reduced soil moisture under shade trees during the “drier” season, coinciding when these trees were defoliated, was largely the result of increase soil water evaporation as indicated by the positive relationship between soil water content and lc‐excess of surface soil water. In contrast, the evergreen coffee shrubs had a higher leaf area index during the “drier” season, leading to enhanced rainfall interception and a negative relationship between lc‐excess and soil water content. During the wet season, there was no clear relationship between soil water content and between lc‐excess of surface soil water. Greater surface soil water under coffee during the dry season may, in part, explain greater preferential flow under coffee compared with under trees in conditions of low rainfall intensities. However, with increasing rainfall intensities during the wet season, there was no obvious difference in preferential flow between the two canopy covers. Results from this study indicate that our new conceptual model can be used to help disentangling the relative influence of canopy cover on local soil water isotopic composition and dynamics, yet also stresses the need for additional measurements to better resolve the underlying processes by which canopy structure influences local water dynamics.  相似文献   
194.
The results of research on pairs of PSR which were possibly components of disrupted binaries, seem to advance further arguments in favour of the idea, suggested by some authors, that most of PSR were formed in binary systems.  相似文献   
195.
40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1 precision of±0.25%–0.4% (±0.07–0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1 precisions averaging ±0.25%. Plateau ages from multiple (n=3–8) samples of individual ignimbrites show 1 within-unit precision of ±0.1%–0.4% (±0.04–0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1–3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west.  相似文献   
196.
The distribution of the metal ions Zn and Pb between particulate and dissolved phase in river Glatt was studied by field measurements and compared with calculated simulations, using parameters obtained by adsorption experiments with natural suspended particulate material. Differences in distribution coefficients obtained from field data are observed in function of the sampling locations and of the composition of the particulate matter.Experiments in which metal ion solutions are titrated with a suspension of natural particles and analyzed by anodic stripping voltammetry, are interpreted in terms of binding capacities and conditional stability constants of Zn and Pb with the surface sites. Binding constants of a particular metal ion varied very little for all samples. We obtained mean values for the conditional average complex formation constants at pH 8 of: logcond K Pb = 9.44 ± 0.18 and logcond K Zn = 8.17 ± 0.20. At this pH, binding capacities of 5 10–3 – 1.7 10–2 mol/kg of particles were obtained for samples collected at different locations and times; organic material, iron and manganese oxides are considered to be the main components that control the adsorption to the particles.Distribution coefficients are calculated from the experimentally obtained binding capacities and conditional stability constants. Calculated distribution coefficients for Zn agree with those obtained from the field data and are not very sensitive to changes in the composition of the solution. Good agreement was obtained for lead as well; for some samples it was important to take two types of sites with different affinity into consideration.  相似文献   
197.
We measured the Fe isotope fractionation during the reactions of Fe(II) with goethite in the presence and absence of a strong Fe(III) chelator (desferrioxamine mesylate, DFAM). All experiments were completed in an O2-free glove box. The concentrations of aqueous Fe(II) ([Fe(II)aq]) decreased below the initial total dissolved Fe concentrations ([Fe(II)total], 2.15 mM) due to fast adsorption within 0.2 day. The concentration of adsorbed Fe(II) ([Fe(II)ads]) was determined as the difference between [Fe(II)aq] and the concentration of extracted Fe(II) in 0.5 M HCl ([Fe(II)extr]) (i.e., [Fe(II)ads] = [Fe(II)extr] − [Fe(II)aq]). [Fe(II)ads] also decreased with time in experiments with and without DFAM, documenting that fast adsorption was accompanied by a second, slower reaction. Interestingly, [Fe(II)extr] was always smaller than [Fe(II)total], indicating that some Fe(II) was sequestered into a pool that is not HCl-extractable. The difference was attributed to Fe(II) incorporated into goethite structure (i.e., [Fe(II)inc] = [Fe(II)total] −[Fe(II)extr]). More Fe(II) was incorporated in the presence of DFAM than in its absence at all time steps. Regardless of the presence of DFAM, both aqueous and extracted Fe(II) (δ56/54Fe(II)aq and δ56/54Fe(II)extr) became isotopically lighter than or similar to goethite (− 0.27‰) at day 7, implying that the isotope exchange occurred between bulk goethite and aqueous Fe. Consistently, the mass balance indicated that the incorporated Fe is isotopically heavier than extracted Fe. These observations suggested that (i) co-adsorption of Fe(II) with DFAM resulted in more pervasive electron transfer, (ii) the electron transfer from heavy Fe(II) in the adsorbed Fe(II) to light Fe(III) in goethite results in the fixation of heavy adsorbed Fe(III) on the surface and accumulation of Fe(II) within the goethite, and (iii) desorption of the reduced, light Fe from goethite does not necessarily occur at the same surface sites where adsorption occurred.  相似文献   
198.
A significant As anomaly has been reported in the literature for stream sediments and unlithified Quaternary deposits of the Pecora River valley in Southern Tuscany, extending from the “Colline Metallifere” pyrite-base metals district to the Tyrrhenian Sea. The As anomaly spreads over several square kilometers around a core that exceeds 500 ppm. Several source contributions (from natural to anthropogenic) have been invoked to explain the observed As distribution in the Pecora Valley, including the metal-working industry which was active in this area, particularly in Etrusco-Roman times and in the Middle Ages. In order to evaluate the contribution of ancient mining and metallurgical activities in the Pecora Valley to elevated As concentrations in the environment, a detailed mineralogical and geochemical survey of metallurgical slags and smelted ore minerals was undertaken from six different sites through the Pecora Valley: Poggio Butelli (Etrusco-Roman iron slags); Sata Creek, Arialla, Marsiliana, Forra and Cascata sites (all Medieval base metals slags). The As content of Etrusco-Roman slags is relatively low (few tens of ppm), whereas Medieval slags show variable, but higher amounts of base metals (±Ag) (ranging from tens to tens of thousands ppm) and As (up to 267 ppm, with average contents of about 40 ppm). Arsenic is mostly partitioned in sulfides disseminated through the glassy groundmass rather than in solid solution with the glassy matrix. Remnants of the ore used for base metal and Ag smelting during the Middle Ages had the highest As contents (up to about 1000 ppm).  相似文献   
199.
Processing of arsenopyrite ore took place at Blackwater Au mine, New Zealand, between 1908 and 1951 and no rehabilitation was undertaken after mine closure. High As concentrations in solid processing residues (up to 40 wt% As) are due to secondary As minerals. Site pH regimes vary from 4.1 to circum-neutral. Originally, all processed As was present as arsenolite (arsenic trioxide polymorph, AsIII), a by-product of arsenopyrite roasting. Near the roaster, scorodite precipitated as a result of the high dissolved As concentration during arsenolite dissolution. The formation of scorodite has two major consequences. Firstly, the scorodite precipitate cements the ground in the vicinity of the roaster area, thereby creating an impermeable surface crust (up to 30 wt% As) and encapsulating weathered arsenolite grains within the cement. Secondly, formation of scorodite temporarily immobilizes some of the dissolved As that is generated during nearby arsenolite dissolution. Where all the available arsenolite has dissolved, scorodite becomes soluble, and the dissolved As concentrations are controlled by scorodite solubility, which is at least two orders of magnitudes lower than arsenolite solubility. Downstream Eh conditions fall below the AsV/AsIII boundary, so that scorodite does not precipitate and dissolved As concentrations are controlled by arsenolite solubility. Dissolved As reaches up to 52 mg/L in places, and exceeds the current WHO drinking water guideline of 0.01 mg/L by 5200 times. This study shows that dissolved As concentrations in discharge waters at historic mine sites are dependent on the processing technology and associated mineralogy.  相似文献   
200.
Prediction of future Arctic climate and environmental changes, as well as associated ice-sheet behavior, requires placing present-day warming and reduced ice extent into a long-term context. Here we present a record of Holocene climate and glacier fluctuations inferred from the paleolimnology of small lakes near Istorvet ice cap in East Greenland. Calibrated radiocarbon dates of organic remains indicate deglaciation of the region before ~10,500 years BP, after which time the ice cap receded rapidly to a position similar to or less extensive than present, and lake sediments shifted from glacio-lacustrine clay to relatively organic-rich gyttja. The lack of glacio-lacustrine sediments throughout most of the record suggests that the ice cap was similar to or smaller than present throughout most of the Holocene. This restricted ice extent suggests that climate was similar to or warmer than present, in keeping with other records from Greenland that indicate a warm early and middle Holocene. Middle Holocene magnetic susceptibility oscillations, with a ~200-year frequency in one of the lakes, may relate to solar influence on local catchment processes. Following thousands of years of restricted extent, Istorvet ice cap advanced to within 365 m of its late Holocene limit at ~AD 1150. Variability in the timing of glacial and climate fluctuations, as well as of sediment organic content changes among East Greenland lacustrine records, may be a consequence of local factors, such as elevation, continentality, water depth, turbidity, and seabirds, and highlights the need for a detailed spatial array of datasets to address questions about Holocene climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号