首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   9篇
地质学   11篇
海洋学   2篇
天文学   25篇
自然地理   2篇
  2023年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1983年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
51.
The Mesoproterozoic deeply eroded Keurusselk? impact structure in central Finland is situated within the ??1860?C1890 Ma Central Finland Granitoid Complex. An estimate for the original size of the structure is 30 km, yielding a 5 km wide central uplift with insitu shatter cones and shock metamorphic features in quartz. Petrophysical and rock magnetic properties of the three shallow drill cores (V-001, V-002 and V-003) in the vicinity of the central uplift are determined in order to assess the dimensions of the central uplifts magnetic anomalies. The drill core lithologies consist of schists (metagraywackes), metavolcanic rocks, gneisses and breccia. Petrophysical properties of the drill core rocks show average densities (D) of 2644?C2752 kg/m3, susceptibilities (??) of 160?C761 × 10?6 SI and natural remanent magnetization (NRM) of 3?C306 mA/m and Koenigsberger Q ratios of 0.1?C10. Rock magnetic measurements with temperature dependence of susceptibility (??-T) curves and hysteresis indicated mostly paramagnetic behaviour. However, a fraction of fine-grained ferromagnetic minerals (pyrrhotite and magnetite) was detected from all lithologies. Breccia veins cutting the parautochthonous subcrater floor show lower values of petrophysical properties (D, ??, NRM, Q) and this could be related to the impact event. Amphiboles and micas in the breccia are strongly altered and replaced by secondary chlorite. Chloritization may indicate widespread impact-induced hydrothermal alteration of the target rocks or it may be related to regional tectonic shearing. However, planar deformation features in quartz, found from shatter cones in the central uplift area, are decorated with fluid inclusions indicating that alteration by post-impact processes was present.  相似文献   
52.
Magnetic measurements of meteorites suggest that small bodies (e.g. asteroids) in the Solar System have small but distinct magnetic fields produced by the bulk remanent magnetisation (NRM) of the body. Here we report calculations of magnetic fields of small bodies, assuming that they can be approximated as homogeneously magnetised spheres with dipole moments derived from NRM data on known meteorites. The magnetic fields are compared with the field of the asteroid 951 Gaspra measured by spacecraft Galileo in 1991 (Kivelson et al., 1993). The result of this comparison suggests that the field of Gaspra could be caused by an L-, H- or E-chondritic or a pallasite body. The spectral reflectance data on Gaspra suggest, however, that it is a basaltic achondrite. The problem can be resolved if Gaspra is a differentiated body, its surface material being closer to that of basaltic achondrites, and the bulk closer to ordinary chondrites or pallasites. We also present magnetic anomaly profiles along the surface of Mars such as would be measured with a magnetometer installed on a Rover-type vehicle by assuming that the main sources of the surface anomalies are the NRMs of the boulders on the Martian surface. The NRM values are taken from the data measured on SNC meteorites. The results suggest large oscillations in magnetic field intensity at the Martian surface.  相似文献   
53.
Abstract— The 4 km wide and 500 m deep circular Kärdla impact structure in Hiiumaa Island, Estonia, of middle Ordovician age (~455 Ma), is buried under Upper Ordovician and Quaternary sediments. To constrain the geophysical models of the structure, petrophysical properties such as magnetic susceptibility, natural remanent magnetization (NRM), density, electrical conductivity, porosity and P-wave velocity were measured on samples of crystalline and sedimentary rocks collected from drill cores in different parts of the structure and the surrounding area. The results were used to interpret the central gravity anomaly of ?3 mGal and the magnetic anomaly of ?100 nT and also the surrounding weak positive anomalies revealed by high precision survey data. The unshocked granitic rocks outside the structure have a mean density of ~2630 kgm?3. Their shocked counterparts have densities of ~2400 kgm?3 at a depth of ~500 m, increasing up to 2550 kgm?3 at a depth of 850 m. Porosity and electrical conductivity decrease, but P-wave velocity increases as density increases away from the impact point. Thus, the gradual changes in the physical properties of the rocks as a function of radial distance from the crater centre are consistent with an impact origin for Kärdla. As in many other impact structures, the magnetization of the shocked rocks are also clearly lower than those of unshocked target rocks. A new geophysical and geological model of the Kärdla structure is presented based on geophysical field measurements and data on gradual changes in petrophysical parameters of the shocked target and overlying rocks, together with structural data from numerous boreholes. An important feature of this model is the lack of an observable geophysical signature of the central uplift observed in drillcores.  相似文献   
54.
The carbonates in martian meteorite ALH84001 preserve a record of aqueous processes on Mars at 3.9 Ga, and have been suggested to contain signatures of ancient martian life. The conditions of the carbonate formation environment are critical for understanding possible evidence for life on Mars, the history of water on Mars, and the evolution of the martian atmosphere. Despite numerous studies of petrographic relationships, microscale oxygen isotope compositions, microscale chemical compositions, and other minerals associated with the carbonates, formation models remain relatively unconstrained. Microscale carbon isotope analyses of ALH84001 carbonates reveal variable δ13C values ranging from +27 to +64. The isotopic compositions are correlated with chemical composition and extent of crystallization such that the Mg-poor, early-formed carbonates are relatively 13C depleted and the Mg-rich, later forming carbonates, are 13C enriched. These data are inconsistent with many of the previously proposed environments for carbonate formation, and a new set of hypotheses are proposed. Specifically, two new models that account for the data involve low temperature (<100°C) aqueous processes: (1) the carbonates formed during mixing of two fluids derived from separate chemical and isotopic reservoirs; or (2) the carbonates formed from high pH fluids that are exposed to a CO2-rich atmosphere and precipitate carbonate, similar to high pH springs on Earth.  相似文献   
55.
Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42? and ammonium (NH4+) dominated the PM1 size fraction, while SO42? and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42? had the highest contribution in the two smaller size fractions, while NO3? had the highest contribution in the PM2.5–10 size fraction. SO42? and NO3? levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42? was significantly lower due to SO42? being formed distant from SO2 emissions and submicron SO42? having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42?. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.  相似文献   
56.
Confidence in the use of macroalgae as an indicator of estuarine eutrophication is limited by the lack of quantitative data on the thresholds of its adverse effects on benthic habitat quality. In the present study, we utilized sediment profile imagery (SPI) to identify thresholds of adverse effects of macroalgal biomass, sediment organic carbon (% OC) and sediment nitrogen (% N) concentrations on the apparent Redox Potential Discontinuity (aRPD), the depth that marks the boundary between oxic near-surface sediment and the underlying suboxic or anoxic sediment. At 16 sites in eight California estuaries, SPI, macroalgal biomass, sediment percent fines, % OC, and % N were analyzed at 20 locations along an intertidal transect. Classification and Regression Tree (CART) analysis was used to identify step thresholds associated with a transition from "reference" or natural background levels of macroalgae, defined as that range in which no effect on aRPD was detected. Ranges of 3–15 g dw macroalgae m?2, 0.4–0.7 % OC and 0.05–0.07 % N were identified as transition zones from reference conditions across these estuaries. Piecewise regression analysis was used to identify exhaustion thresholds, defined as a region along the stress–response curve where severe adverse effects occur; levels of 175 g dw macroalgae m?2, 1.1 % OC and 0.1 % N were identified as thresholds associated with a shallowing of aRPD to near zero depths. As an indicator of ecosystem condition, shallow aRPD has been related to reduced volume and quality for benthic infauna and alteration in community structure. These effects have been linked to reduced availability of forage for fish, birds and other invertebrates, as well as to undesirable changes in biogeochemical cycling.  相似文献   
57.
We review the oxygen isotopic compositions of minerals in chondrules and compound objects composed of a chondrule and a refractory inclusion, and bulk oxygen isotopic compositions of chondrules in unequilibrated ordinary, carbonaceous, enstatite, and Kakangari-like chondrites, focusing on data acquired using secondary ion mass-spectrometry and laser fluorination coupled with mass-spectrometry over the last decade. Most ferromagnesian chondrules from primitive (unmetamorphosed) chondrites are isotopically uniform (within 3–4‰ in Δ17O) and depleted in 16O (Δ17O>−7‰) relative to amoeboid olivine aggregates (AOAs) and most calcium–aluminum-rich inclusions (CAIs) (Δ17O<−20‰), suggesting that these classes of objects formed in isotopically distinct gaseous reservoirs, 16O-poor and 16O-rich, respectively. Chondrules uniformly enriched in 16O (Δ17O<−15‰) are exceptionally rare and have been reported only in CH chondrites. Oxygen isotopic heterogeneity in chondrules is mainly due to the presence of relict grains. These appear to consist of chondrules of earlier generations and rare refractory inclusions; with rare exceptions, the relict grains are 16O-enriched relative to chondrule phenocrysts and mesostasis. Within a chondrite group, the magnesium-rich (Type I) chondrules tend to be 16O-enriched relative to the ferrous (Type II) chondrules. Aluminum-rich chondrules in ordinary, enstatite, CR, and CV chondrites are generally 16O-enriched relative to ferromagnesian chondrules. No systematic differences in oxygen isotopic compositions have been found among these chondrule types in CB chondrites. Aluminum-rich chondrules in carbonaceous chondrites often contain relict refractory inclusions. Aluminum-rich chondrules with relict CAIs have heterogeneous oxygen isotopic compositions (Δ17O ranges from −20‰ to 0‰). Aluminum-rich chondrules without relict CAIs are isotopically uniform and have oxygen isotopic compositions similar to, or approaching, those of ferromagnesian chondrules. Phenocrysts and mesostases of the CAI-bearing chondrules show no clear evidence for 16O-enrichment compared to the CAI-free chondrules. Spinel, hibonite, and forsterite of the relict refractory inclusions largely retained their original oxygen isotopic compositions. In contrast, plagioclase and melilite of the relict CAIs experienced melting and 16O-depletion to various degrees, probably due to isotopic exchange with an 16O-poor nebular gas. Several igneous CAIs experienced isotopic exchange with an 16O-poor nebular gas during late-stage remelting in the chondrule-forming region. On a three-isotope diagram, bulk oxygen isotopic compositions of most chondrules in ordinary, enstatite, and carbonaceous chondrites plot above, along, and below the terrestrial fractionation line, respectively. Bulk oxygen isotopic compositions of chondrules in altered and/or metamorphosed chondrites show evidence for mass-dependent fractionation, reflecting either interaction with a gaseous/fluid reservoir on parent asteroids or open-system thermal metamorphism. Bulk oxygen isotopic compositions of chondrules and oxygen isotopic compositions of individual minerals in chondrules and refractory inclusions from primitive chondrites plot along a common line of slope of 1, suggesting that only two major reservoirs (gas and solids) are needed to explain the observed variations. However, there is no requirement that each had a permanently fixed isotopic composition. The absolute (207Pb–206Pb) and relative (27Al–26Mg) chronologies of CAIs and chondrules and the differences in oxygen isotopic compositions of most chondrules (16O-poor) and most refractory inclusions (16O-rich) can be interpreted in terms of isotopic self-shielding during UV photolysis of CO in the initially 16O-rich (Δ17O−25‰) parent molecular cloud or protoplanetary disk. According to these models, the UV photolysis preferentially dissociates C17O and C18O in the parent molecular cloud and in the peripheral zones of the protoplanetary disk. If this process occurs in the stability field of water ice, the released atomic 17O and 18O are incorporated into water ice, while the residual CO gas becomes enriched in 16O. During the earliest stages of evolution of the protoplanetary disk, the inner solar nebula had a solar H2O/CO ratio and was 16O-rich. During this time, AOAs and the 16O-rich CAIs and chondrules formed. Subsequently, the inner solar nebula became H2O- and 16O-depleted, because ice-rich dust particles, which were depleted in 16O, agglomerated outside the snowline (5 AU), drifted rapidly towards the Sun and evaporated. During this time, which may have lasted for 3 Myr, most chondrules and the 16O-depleted igneous CAIs formed. We infer that most chondrules formed from isotopically heterogeneous, but 16O-depleted precursors, and experienced isotopic exchange with an 16O-poor nebular gas during melting. Although the relative roles of the chondrule precursor materials and gas–melt isotopic exchange in establishing oxygen isotopic compositions of chondrules have not been quantified yet, mineralogical, chemical, and isotopic evidence indicate that Type I chondrules may have formed in chemical and isotopic equilibrium with nebular gas of variable isotopic composition. Whether these variations were spatial or temporal are not known yet.  相似文献   
58.
The Summanen structure is located in Central Finland and is one of Finland's 12 known meteorite impact structures. In 2017, the discovery of Summanen was based on numerous shatter cone boulders with planar deformation features (PDFs) and a circular electromagnetic anomaly, which is 2.6 km in diameter. The site was revisited in 2020 and 2022, and shatter cone-bearing outcrops were discovered. PDFs and feather features were identified in samples from these outcrops. A total of 38 PDF sets in 27 quartz grains resulted in rational crystallographic orientations concentrating on {10 1 ¯ 4}, {10 1 ¯ 3}, {10 1 ¯ 2}, and {11 2 ¯ 2}, implying shock pressures of 2–20 GPa. Gravity measurements were taken, and the electrical conductivity of the structure was studied. The gravimetric results revealed a circular negative anomaly of about 4 km in diameter, with an amplitude of −3.5 mGal. Excluding the gravitational effect of water and Quaternary sediments reduces the anomaly to −1.6 mGal. A bowl-shaped conductive layer, likely containing relict saline water in the impact-fractured bedrock, was identified to a depth of 240 m. Topographic and bathymetric data were combined to determine the impact's effect and interpret the level of erosion. Cobbles of sedimentary sand- and siltstones were found on the coastline of Lake Summanen. Based on their similarity to those found in the Söderfjärden impact crater with a Cambrian age, it is likely that these rocks and post-impact infill are also of a similar age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号