首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   18篇
地质学   24篇
海洋学   33篇
天文学   36篇
自然地理   12篇
  2017年   4篇
  2016年   4篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   10篇
  2007年   8篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   8篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1934年   2篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
121.
Average (over longitude and time) photospheric magnetic field components are derived from 3 Stanford magnetograms made near the solar minimum of cycle 21. The average magnetograph signal is found to behave as the projection of a vector for measurements made across the disk. The poloidal field exhibits the familiar dipolar structure near the poles, with a measured signal in the line Fe i 5250 Å of 1 G. At low latitudes the poloidal field has the polarity of the poles, but is of reduced magnitude ( 0.1 G). A net photospheric toroidal field with a broad latitudinal extent is found. The polarity of the toroidal field is opposite in the nothern and southern hemispheres and has the same sense as subsurface flux tubes giving rise to active regions of solar cycle 21.These observations are used to discusse large-scale electric currents crossing the photosphere and angular momentum loss to the solar wind.Now at Kitt Peak National Observatory, Tucson, Ariz. 85726, U.S.A.  相似文献   
122.
123.
A higher order closure model is applied to simulate the dynamics in an area with a deep valley characterized by complex terrain in the southwestern US. The simulation results show generally good agreement with measured profiles at two locations within the valley. Both the measurements and the simulations indicate that the flow dynamics in the area are highly influenced by the topography and meandering of the valley, and can be resolved only by the full three-dimensional model code. The wind veering simulated over the range of the topographic elevations is often larger than 100 deg and in some cases as large as 180 deg, as a consequence of topographic forcing. In the case of an infinitely long valley, as is assumed in two-dimensional test simulations, a strong low-level jet occurs within the valley during stable conditions. The jet is mainly a consequence of the Coriolis effect. However, the jet development is significantly reduced due to asymmetric effects of the actual topography treated in the three-dimensional simulations. Tests with the two-dimensional nonhydrostatic version of the model show significant wave responses for a stable stratified flow over the valley. The structure resembles nonlinear mesoscale lee waves, which are intrinsically nonhydrostatic. However, considering the three-dimensional nature of this valley system, a better understanding and verification of the nonhydrostatic effects requires both a three-dimensional nonhydrostatic numerical model and an observational data set which is fully representative in all three dimensions.List of symbols (unless otherwise defined in the text) B 1 closure constant - f Coriolis parameter - g acceleration of gravity - K M ,K H ,K R turbulent exchange coefficients for momentum, heat and moisture - k von Karman constant - L Monin-Obukhov length - q 2 twice the turbulent kinetic energy - R specific humidity - s height of the model top - T g ground surface temperature - t time - U, V horizontal components of wind - U g ,V g geostrophic wind components - u, w perturbation components ofU andW wind components - u * friction velocity - W vertical wind component in the terrain-following coordinates - x, y horizontal coordinates - Z actual height above sea level - z actual height above ground - z 0 roughness length - z g terrain height - z i depth of the convective boundary layer - 1 closure constant - coefficient of thermal expansion - height in the terrain-following coordinate - master length scale in the turbulent parameterization - scaled pressure (Exner function) - potential temperature - m normalized vertical wind shear  相似文献   
124.
The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs(quantitative precipitation forecasts) are investigated by applying the HIRLAM(high resolution limited area model) to the summer heavy-rain cases in China.The performance of the control run,for which a 0.5°×0.5°grid spacing and a traditional "grid-box supersaturation removal+Kuo type convective paramerization" are used as the moist physics,is compared with that of the sensitivity runs with an enhanced model's moist physics(Sundqvist scheme) and an increased horizontal resolution(0.25°×0.25°),respectively.The results show:(1) The enhanced moist physics scheme(Sundqvist scheme),by introducing the cloud water content as an additional prognostic variable and taking into account briefly of the microphysics involved in the cloud-rain conversion,does bring improvements in the model's QPFs.Although the deteriorated QPFs also occur occasionally,the improvements are found in the majority of the cases,indicating the great potential for the improvement of QPFs by enhancing the model's moist physics.(2) By increasing the model's horizontal resolution from 0.5°×0.5°,which is already quite high compared with that of the conventional atmospheric soundings,to 0.25°×0.25°without the simultaneous enhancement in model physics and objective analysis,the improvements in QPFs are very limited.With higher resolution,although slight amelioration in locating the rainfall centers and in resolving some finer structures of precipitation pattern are made,the number of the mis-predicted fine structures in rainfall field increases with the enhanced model resolution as well.  相似文献   
125.
Samples of Atlantic salmon (Salmo salar), saithe (Pollacius virens), blue mussel (Mytilus edulis), brown seaweed (Ascophyllum nodosum) and sediment were collected from six different fish farms. Five of the farms used net pens treated with copper-containing coatings, whereas one farm did not use copper-containing coating (this was used as a reference location). Samples of muscle, liver and gills of Atlantic salmon and saithe, blue mussel and brown seaweed were freeze dried, homogenised, wet digested and analysed for copper by flame atomic absorption spectrometry. The results showed no significant differences in copper concentrations among the samples from the different locations. The copper contents of some of the samples appeared to be in the upper part of the normal concentration range. From a nutritional point of view, the use of copper-coatings on net pens did not affect the quality of the seafood products either within, or around the net pen.  相似文献   
126.
127.
The characteristics of dynamics and thermodynamics of the atmospheric boundary layer in a part of the Colorado River Valley, centered around Lake Mohave, have been investigated by analysis of measurements conducted during a field program in late spring and early summer of 1986 and a series of numerical simulations by a three-dimensional second-moment turbulence-closure model. The model was validated against measurements described in a companion article (Engeret al., 1993). According to airsonde measurements performed on eight nights, the depth of the surface inversion was around 200 m with an average temperature gradient of about 30 K km–1. Analysis of acoustic sounder data collected during one month revealed significant diurnal variations ofU andV wind-speed components related to slope and valley flows, respectively. Some of the dynamics properties have been explained by the simulation results. It has been shown that the appearance of supergeostrophic southerly valley flow is associated with the westerly component of the geostrophic flow. Since a westerly component of the geostrophic wind is quite common for this area in summer, this effect also explains the frequently observed southerly valley flow in summer. Elevated minima of the measured wind speed around valley ridges appear to be related to the interaction of conservation of momentum in theX andY directions. The critical direction of the geostrophic wind relevant for reversal of up-valley flow to down-valley flow has also been studied. The critical direction is about 300° for one of the measurement sites and, depending on the angle between valley axis and south-north direction, the critical direction is expected to vary by about 15–20°. The scale analysis of the simulated equations of motion and turbulence kinetic energy emphasizes the strong impact of meandering of the flow due to actual topographic complexity.  相似文献   
128.
A solar telescope has been built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field have been made daily since May 1975. The typical mean field magnitude has been about 0.15 G with typical measurement error less than 0.05 G. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (see near the Earth with a 4 day lag). The differences in the observed structures can be understood in terms of a warped current sheet model.  相似文献   
129.
130.
Geothermal energy is classified as a renewable energy source and it utilizes the heat generated in the earth primarily from the natural radioactive decay of isotopes of uranium, thorium and potassium. Heat is extracted from the earth to generate geothermal energy via a carrier, usually water occurring either in the liquid or steam phase. In the late 19th century and the early 20th century, the first developments of geothermal resources for power generation and household heating got underway successfully. Many of these geothermal fields are still being utilized today, proving their sustainability. Today geothermal energy is being utilized in more than 72 countries around the world and of the Nordic countries Iceland and Sweden have been in the forefront in each of their respective fields. While geothermal heat pumps are widely used for space heating in Sweden, geothermal energy covers 55% of the primary energy consumption in Iceland where it is used for space heating, power generation and industrial purposes. Future developments aim at expanding the range of viable geothermal resources by improving the capabilities to generate electricity from geothermal resources at temperatures as low as 100℃, as well as developing geothermal resources where water needs to be introduced, so-called hot dry rock resources. But the biggest expansion is expected to continue to be in the installations of geothermal heat pumps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号