首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   13篇
测绘学   1篇
大气科学   3篇
地球物理   20篇
地质学   20篇
海洋学   6篇
天文学   48篇
自然地理   11篇
  2023年   1篇
  2020年   5篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   9篇
  2015年   8篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1985年   1篇
  1940年   1篇
排序方式: 共有109条查询结果,搜索用时 32 毫秒
51.
Shocked quartz and feldspar grains commonly exhibit planar microstructures, such as planar fractures, planar deformation features, and possibly microtwins, which are considered to have formed by shock metamorphism. Their orientation and frequency are typically reported to be randomly distributed across a sample. The goal of this study is to investigate whether such microstructures are completely random within a given sample, or whether their orientation might also retain information on the direction of the local shock wave propagation. For this work, we selected samples of shatter cones, which were cut normal to the striated surface and the striation direction, from three impact structures (Keurusselkä, Finland, and Charlevoix and Manicouagan, Canada). These samples show different stages of pre‐impact tectonic deformation. Additionally, we investigated several shocked granite samples, selected at different depths along the drill core recovered during the joint IODP‐ICDP Chicxulub Expedition 364 (Mexico). In this case, thin sections were cut along two orthogonal directions, one parallel and one normal to the drill core axis. All the results refer to optical microscopy and universal‐stage analyses performed on petrographic thin sections. Our results show that such shock‐related microstructures do have a preferred orientation, but also that relating their orientation with the possible shock wave propagation is quite challenging and potentially impossible. This is largely due to the lack of dedicated experiments to provide a key to interpret the observed preferred orientation and to the lack of information on postimpact orientation modifications, especially in the case of the drill core samples.  相似文献   
52.
A Lagrangian numerical approach for the simulation of rapid landslide runouts is presented and discussed. The simulation approach is based on the so‐called Particle Finite Element Method. The moving soil mass is assumed to obey a rigid‐viscoplastic, non‐dilatant Drucker–Prager constitutive law, which is cast in the form of a regularized, pressure‐sensitive Bingham model. Unlike in classical formulations of computational fluid mechanics, where no‐slip boundary conditions are assumed, basal slip boundary conditions are introduced to account for the specific nature of the landslide‐basal surface interface. The basal slip conditions are formulated in the form of modified Navier boundary conditions, with a pressure‐sensitive threshold. A special mixed Eulerian–Lagrangian formulation is used for the elements on the basal interface to accommodate the new slip conditions into the Particle Finite Element Method framework. To avoid inconsistencies in the presence of complex shapes of the basal surface, the no‐flux condition through the basal surface is relaxed using a penalty approach. The proposed model is validated by simulating both laboratory tests and a real large‐scale problem, and the critical role of the basal slip is elucidated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
53.
As pointed out in previous studies, the measurement of the skewness of the convergence field κ will be useful in breaking the degeneracy among the cosmological parameters constrained from weak lensing observations. The combination of shot noise and finite survey volume implies that such a measurement is likely to be performed in a range of intermediate scales (0.5 to 20 arcmin) where neither perturbation theory nor the hierarchical ansatz applies. Here we explore the behaviour of the skewness of κ at these intermediate scales, based on results for the non-linear evolution of the mass bispectrum. We combined different ray-tracing simulations to test our predictions, and we find that our calculations describe accurately the transition from the weakly non-linear to the strongly non-linear regime. We show that the single lens-plane approximation remains accurate even in the non-linear regime, and we explicitly calculate the corrections to this approximation. We also discuss the prospects of measuring the skewness in upcoming weak lensing surveys.  相似文献   
54.
Abstract– Planar deformation features (PDFs) in quartz, one of the most commonly used diagnostic indicators of shock metamorphism, are planes of amorphous material that follow crystallographic orientations, and can thus be distinguished from non‐shock‐induced fractures in quartz. The process of indexing data for PDFs from universal‐stage measurements has traditionally been performed using a manual graphical method, a time‐consuming process in which errors can easily be introduced. A mathematical method and computer algorithm, which we call the Automated Numerical Index Executor (ANIE) program for indexing PDFs, was produced, and is presented here. The ANIE program is more accurate and faster than the manual graphical determination of Miller–Bravais indices, as it allows control of the exact error used in the calculation and removal of human error from the process.  相似文献   
55.
Coal is currently becoming an increasingly interesting fossil energy resource and that is the reason why its maritime transport, and hence the risk of collier accidents, increase. In this work, the environmental impact of an accidental coal immersion at sea is studied: the physicochemical effects are estimated using innovative experimental setups – a laboratory seawater canal called “polludrome” is used to evaluate the behaviour of coal particles submitted to a seawater flow, and a specifically designed tub is used to study the physicochemical consequences induced when coal is introduced into continuously renewed seawater. When coal is introduced into seawater, the most easily visible consequences are physical: fine coal particles reduce the daylight penetration up to 100% and move along with the flow, and coal chunks accumulate on the floor. Chemical effects are also measured: humic matters are dissolved from coal into seawater (up to 2 mg L−1), but no release of polycyclic aromatic hydrocarbons is evidenced. Some inorganic compounds are dissolved, among which manganese, whose concentrations can reach 1 μg L−1. Fortunately, the results show that the environmental impact of this type of accident would remain limited.  相似文献   
56.
The spatial resolution of a sonic anemometer is limited by the distance between its transducers, and for studies of small-scale turbulence and theories of turbulence, it is desirable to increase this spatial resolution. We here consider resolution improvements obtainable by treating the sonic anemometer as a small tomography array, with application of appropriate inverse algorithms for the reconstruction of temperature and velocity. A particular modification of the sonic anemometer is considered when the number of its transducers is doubled and the time-dependent stochastic inversion algorithm is used for reconstruction. Numerical simulations of the sonic anemometer and its suggested modification are implemented with the temperature and velocity fields modelled as discrete eddies moving through the sonic’s volume. The tomographic approach is shown to provide better reconstructions of the temperature and velocity fields, with spatial resolution increased by as much as a factor of ten. The spatial resolution depends on the inverse algorithm and also improves by increasing the number of transducers.  相似文献   
57.
58.
59.
Rockfalls are dominant in the rock slopes and rock ridge morphodynamics in high mountain areas and endanger people who pass along or stay there, as well as infrastructure that host them (cable cars, refuges). Risks are probably greater now because of fast permafrost degradation and regression of surface ice, two consequences of the atmospheric warming of the last decades. These two commonly associated factors are involved in the instability of rock slopes by modifying the mechanical behaviour of often ice‐filled rock fractures and the mechanical constraints in the rock masses. This paper examines over 15 years the instability of the lower Arête des Cosmiques on the French side of the Mont Blanc massif. Its vulnerability is due to the presence of a high‐capacity refuge on its top (3613 m a.s.l.). In 1998, a part of the refuge was left without support when a collapse of 600 m3 occurred immediately below it. Since this date, reinforcement work has been carried out in this area, but the whole ridge has been affected by around 15 relatively shallow rockfalls. Through a multidisciplinary approach, this article assesses the role of the cryospheric factors in the triggering of these rockfalls.  相似文献   
60.
Holocene glaciers have contributed to an abundance of unstable sediments in mountainous environments. In permafrost environments, these sediments can contain ground ice and are subject to rapid geomorphic activity and evolution under condition of a warming climate. To understand the influence of ground ice distribution on this activity since the Little Ice Age (LIA), we have investigated the Pierre Ronde and Rognes proglacial areas, two cirque glacier systems located in the periglacial belt of the Mont Blanc massif. For the first time, electrical resistivity tomography, temperature data loggers and differential global positioning systems (dGPS) are combined with historical documents and glaciological data analysis to produce a complete study of evolution in time and space of these small landsystems since the LIA. This approach allows to explain spatial heterogeneity of current internal structure and dynamics. The studied sites are a complex assemblage of debris‐covered glacier, ice‐rich frozen debris and unfrozen debris. Ground ice distribution is related to former glacier thermal regime, isolating effect of debris cover, water supply to specific zones, and topography. In relation with this internal structure, present dynamics are dominated by rapid ice melt in the debris‐covered upper slopes, slow creep processes in marginal glacigenic rock glaciers, and weak, superficial reworking in deglaciated moraines. Since the LIA, geomorphic activity is mainly spatially restricted within the proglacial areas. Sediment exportation has occurred in a limited part of the former Rognes Glacier and through water pocket outburst flood and debris flows in Pierre Ronde. Both sites contributed little sediment supply to the downslope geomorphic system, rather by episodic events than by constant supply. In that way, during Holocene and even in a paraglacial context as the recent deglaciation, proglacial areas of cirque glaciers act mostly as sediment sinks, when active geomorphic processes are unable to evacuate sediment downslope, especially because of the slope angle weakness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号