首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   22篇
  国内免费   5篇
测绘学   1篇
大气科学   5篇
地球物理   88篇
地质学   76篇
海洋学   49篇
天文学   68篇
自然地理   11篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   4篇
  2016年   11篇
  2015年   10篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   14篇
  2010年   12篇
  2009年   8篇
  2008年   16篇
  2007年   12篇
  2006年   10篇
  2005年   22篇
  2004年   10篇
  2003年   12篇
  2002年   8篇
  2001年   7篇
  2000年   10篇
  1999年   2篇
  1998年   10篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有298条查询结果,搜索用时 78 毫秒
241.
Stemflow was evaluated in a water balance and its contribution to groundwater recharge determined. Gross precipitation, throughfall and stemflow were measured for one year in a pine forest (Tsukuba, Japan) to determine each component of the water balance in the forest. Groundwater recharge rates by stemflow and throughfall were calculated from a mass balance method using chloride in subsurface waters. The stemflow in the water balance was relatively small when estimated as a value per canopy projected area of the tree in the forest. However, the results for the mass balance of chloride in subsurface waters indicated that it was impossible to disregard the stemflow in determining groundwater recharge. Although the ratio of stemflow to the net precipitation was small in the water balance, the effect of stemflow on groundwater recharge was relatively large.  相似文献   
242.
Phytoplankton dynamics in the lower euphotic zone were observed by tracking a subsurface water released at 20-m depth from Takumi, an artificial upwelling device. Takumi continually discharged seawater pumped up from a depth of 205 m: this water was mixed with 5-m depth water to adjust the density to that of 20-m depth water of Sagami Bay, Japan. The discharged water was pulse-labeled at Takumi with uranine and tracked for 63.9 h with a drifting buoy equipped with a drogue at 20-m depth. We present a simple model to estimate in situ phytoplankton net growth rates from temporal changes in phytoplankton abundance in the discharged water with correction for the influence of water exchange between the discharged water and neighboring layers. Lagrangian observation showed active growth of pico- and nanophytoplankton, especially cryptophytes and Synechococcus (Cyanobacteria), in the subsurface layer. In contrast, diatoms grew little in spite of micromolar concentrations of nutrients. The active growth of pico- and nanophytoplankton was in good agreement with shipboard serial dilution culture experiments. The low growth activity of diatoms was suggested to be related to low light availability in the subsurface layer.  相似文献   
243.
The Ryoke Metamorphic complex has undergone low‐P/T metamorphism and was intruded by granitic magmas around 100 Ma. Subsequently, the belt was uplifted and exposed by the time deposition of the Izumi Group began. The tectonic history of uplift, such as the timing and processes, are poorly known despite being important for understanding the spatiotemporal evolution of the Ryoke Metamorphic Belt. U–Pb zircon ages from sedimentary rocks in the forearc and backarc basins are useful for constraining uplift and magmatism in the provenance. U–Pb dating of detrital zircons from 12 samples (four sandstones and eight granitic clasts) in the Yuasa–Aridagawa basin, a Cretaceous forearc basin in the Chichibu Belt of Southwest Japan, gave mostly ages of 60–110 Ma. Granitic clasts contained in conglomerate suggest that granitic intrusions predate the formation of Coniacian and Maastrichtian conglomerate. Emplacement ages of granitic bodies originated from granitic clasts in Coniacian conglomerate are (110.2 ±1.3) Ma, (106.1 ±1.8) Ma, (101.8+5.8–3.8) Ma, and (95.3 ±1.4) Ma; for granitic clasts in Maastrichtian conglomerate, (89.6 ±1.8) Ma, (87.3+2.4–1.8) Ma, (85.7 ±1.2) Ma, and (82.7 ±1.2) Ma. The results suggest that detrital zircons in the sandstones were mainly derived from volcanic eruptions contemporaneous with depositional age, and plutonic rocks of the Ryoke Metamorphic Belt. Zircon ages of the granitic clast samples also indicate that uplift in the provenance began after Albian and occurred at least during the Coniacian to Maastrichtian. Our results, together with the difference of provenance between backarc and forearc basins suggest that the southern marginal zone of the Ryoke Metamorphic Belt was uplifted and supplied a large amount of clastic materials to the forearc basins during the Late Cretaceous.  相似文献   
244.
The Nobeoka Thrust, an ancient megasplay fault in the Shimanto Belt, southwestern Japan, contains fault rocks from the seismogenic zone, providing an accessible analog of active megasplay faults in deep subduction settings. In this study, the paleostress along the Nobeoka Thrust was analyzed using multiple inversion techniques, including k‐means clustering of fault datasets acquired from drillcores that intersected the thrust. The six resultant stress orientation clusters can be divided into two general groups: stress solutions with north–south‐trending σ1 axes, and those with east–west‐trending σ1 axes. These groups are characterized by the temporal changes for the orientations of the σ1 and σ3 principal stress axes that involve alternation between horizontal and vertical. The findings are probably due to a change in stress state before and after earthquakes that occurred on the fault; similar changes have been observed in active tectonic settings, such as the 2011 Tohoku‐Oki earthquake (Japan).  相似文献   
245.
We evaluated fault activity in northeast–central Japan based on fault orientation, regional stress field, and slip tendency analysis for active and non‐active faults (i.e. faults for which Quaternary activity has not been identified). Slip tendency is generally higher along active faults than non‐active faults, although a high slip tendency was observed along some non‐active faults, indicating their potential to become active. The potential for fault activity along non‐active faults can be modeled using the temporal evolution from non‐active to active during long‐term crustal deformation. The density of potentially active faults varies spatially across the study areas and reflects the temporal evolution of crustal deformation in northeast–central Japan.  相似文献   
246.
Identification and characterization of small extraterrestrial samples, such as small Antarctic meteorites <~1 cm, require the development of convenient laboratory‐based nondestructive analytical techniques using X‐ray diffraction (XRD). We explore the characterization criteria using an X‐ray diffractometer with a Gandolfi attachment using sub‐mm small fragments and powder aggregates for various kinds of stony meteorites and develop a new analytical technique. We primarily focus on olivine and pyroxene because they are the most abundant and important minerals for stony meteorite classification. A new calibration is performed to estimate the FeO content of the olivine in unequilibrated ordinary chondrites, which is useful for determining the meteorite chemical group irrespective of powder aggregate diameter but dependent on fragment grain diameter. This is because X‐ray intensity absorption is more effective for grains than for powders. Clinoenstatite (Cen) and orthoenstatite (Oen) were distinguished using the presence or absence of the isolated Oen 511 index peak. The method is also applied to other stony meteorites including carbonaceous chondrites and achondrites. The XRD results are consistent with studies based on polished sections involving textural observations by scanning microscope and chemical compositions of the constituent minerals. The new measurement technique presented here is convenient because of its use in air by the laboratory‐based X‐ray diffractometer, which makes it useful for the initial analyses of restricted extraterrestrial sample characterization.  相似文献   
247.
Makoto Takeuchi 《Island Arc》2013,22(4):477-493
In this study, the chemical and optical features of detrital garnets from the Middle Permian to Upper Triassic sandstones in the South Kitakami Belt, Northeast Japan, were examined to reveal the tectonic movement in the provenance. The sandstones contain a large amount of detrital grandite garnet grains with a wide range of andradite content. Among them, some grandite garnet grains show optically anisotropic features and rarely oscillatory zoning and sector twinning. The proportion of the detrital anisotropic grandite garnet increases from the Permian to the Middle Triassic and decreases in the Late Triassic. Such grandite garnets with various andradite contents occur in skarn deposits. Isotropic grandite garnets in the early stage of skarn evolution are distributed widely around a pluton, which affects the thermal metamorphism of the surrounding strata. However, anisotropic grandite garnets are formed along veinlets and fractures in the middle to late hydrothermal stage as the pluton cools, and their distribution is limited to a narrower area near the pluton compared to the metamorphic aureoles formed in the early stage. Changes in the chemical and optical features of the detrital garnets indicate a progressive denudation of the plutonic body accompanying skarn deposits in the provenance. The proportion of detrital anisotropic grandite garnet grains among all of the detrital grandite garnet is considered to be a sensitive indicator of the denudation level in a deeper part of the volcanic arc in association with skarn deposits, together with traditional sandstone composition datasets. This newly proposed method should be useful for clarifying the paleogeography during the Permian to Triassic in the East Asian continental margin, associated with uplift and denudation of the Permian volcanic arc, which seems to have been induced by the collision of the North China and South China Blocks.  相似文献   
248.
Abstract— We demonstrate a new formation route for TiC core‐graphitic mantle spherules that does not require carbon‐atom addition and the very long time scales associated with such growth (Bernatowicz et al. 1996). Carbonaceous materials can be formed from C2H2 and its derivatives, as well as from CO gas. In this paper, we will demonstrate that large‐cage‐structure carbon particles can be produced from CO gas by the Boudouard reaction. Since the sublimation temperature for such fullerenes is low, the large cages can be deposited onto previously nucleated TiC and produce TiC core‐graphitic mantle spherules. New constraints for the formation conditions and the time scale for the formation of TiC core‐graphitic mantle spherules are suggested by the results of this study. In particular, TiC core‐graphitic mantle grains that are found in primitive meteorites that have never experienced hydration could be mantled by fullerenes or carbon nanotubes rather than by graphite. In situ observations of these grains in primitive anhydrous meteoritic matrix could confirm or refute this prediction and would demonstrate that the graphitic mantle on such grains is a metamorphic feature due to interaction of the presolar fullerenes with water within the meteorite matrix.  相似文献   
249.
250.

In the Bandung basin, Indonesia, excessive groundwater pumping caused by rapid increases in industrialization and population growth has caused subsurface environmental problems, such as excessive groundwater drawdown and land subsidence. In this study, multiple hydrogeochemical techniques and numerical modeling have been applied to evaluate the recharge processes and groundwater age (rejuvenation). Although all the groundwater in the Bandung basin is recharged at the same elevation at the periphery of the basin, the water type and residence time of the shallow and deep groundwater could be clearly differentiated. However, there was significant groundwater drawdown in all the depression areas and there is evidence of groundwater mixing between the shallow and deep groundwater. The groundwater mixing was traced from the high dichlorodifluoromethane (CFC-12) concentrations in some deep groundwater samples and by estimating the rejuvenation ratio (R) in some representative observation wells. The magnitude of CFC-12 concentration, as an indicator of young groundwater, showed a good correlation with R, determined using 14C activity in samples taken between 2008 and 2012. These correlations were confirmed with the estimation of vertical downward flux from shallower to deeper aquifers using numerical modeling. Furthermore, the change in vertical flux is affected by the change in groundwater pumping. Since the 1970s, the vertical flux increased significantly and reached approximately 15% of the total pumping amount during the 2000s, as it compensated the groundwater pumping. This study clearly revealed the processes of groundwater impact caused by excessive groundwater pumping using a combination of hydrogeochemical methods and modeling.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号