首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
地球物理   3篇
天文学   51篇
  2020年   2篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
21.
We analyze the evolution of coronal plasma upflows from the edges of AR 10978, which has the best limb-to-limb data coverage with Hinode’s EUV Imaging Spectrometer (EIS). We find that the observed evolution is largely due to the solar rotation progressively changing the viewpoint of nearly stationary flows. From the systematic changes in the upflow regions as a function of distance from disc center, we deduce their 3D geometrical properties as inclination and angular spread in three coronal lines (Si vii, Fe xii, and Fe xv). In agreement with magnetic extrapolations, we find that the flows are thin, fan-like structures rooted in quasi separatrix layers (QSLs). The fans are tilted away from the AR center. The highest plasma velocities in these three spectral lines have similar magnitudes and their heights increase with temperature. The spatial location and extent of the upflow regions in the Si vii, Fe xii, and Fe xv lines are different owing to i) temperature stratification and ii) line of sight integration of the spectral profiles with significantly different backgrounds. We conclude that we sample the same flows at different temperatures. Further, we find that the evolution of line widths during the disc passage is compatible with a broad range of velocities in the flows. Everything considered, our results are compatible with the AR upflows originating from reconnections along QSLs between over-pressure AR loops and neighboring under-pressure loops. The flows are driven along magnetic field lines by a pressure gradient in a stratified atmosphere. Our interpretation of the above results is that, at any given time, we observe the superposition of flows created by successive reconnections, leading to a broad velocity distribution.  相似文献   
22.
We study a solar flare that occurred on 10 September 2002, in active region NOAA 10105, starting around 14:52 UT and lasting approximately 5 minutes in the radio range. The event was classified as M2.9 in X-rays and 1N in Hα. Solar Submillimeter Telescope observations, in addition to microwave data, give a good spectral coverage between 1.415 and 212 GHz. We combine these data with ultraviolet images, hard and soft X-ray observations, and full-disk magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic Imager data are used to identify the locations of X-ray sources at different energies, and to determine the X-ray spectrum, while ultraviolet images allow us to characterize the coronal flaring region. The magnetic field evolution of the active region is analyzed using Michelson Doppler Imager magnetograms. The burst is detected at all available radio frequencies. X-ray images (between 12 keV and 300 keV) reveal two compact sources. In the 212 GHz data, which are used to estimate the radio-source position, a single compact source is seen, displaced by 25″ from one of the hard X-ray footpoints. We model the radio spectra using two homogeneous sources, and we combine this analysis with that of hard X-rays to understand the dynamics of the accelerated particles. Relativistic particles, observed at radio wavelengths above 50 GHz, have an electron index evolving with the typical soft–hard–soft behavior.  相似文献   
23.
On May 1, 1993, a flaring X-ray bright point (XBP) was observed for about 16 hours in the old, disintegrating, bipolar active region (AR) NOAA 7493. During this period, a minor magnetic bipole (1020 Mx) emerged in the region. We have found observational evidence showing that the XBP brightenings were due to magnetic reconnection between the new bipole and pre-existing plage fields. The aim of the present work is to substantiate with magnetic modelling what has been shown by the observations. For this purpose we extrapolate the observed photospheric magnetic fields in the linear force-free approximation and follow its evolution during the lifetime of the XBP. From the computed coronal field lines we determine the location of regions of drastic change in field-line linkage, called quasi-separatrix layers or QSLs. QSLs are open layers that behave physically like separatrices: the break down of ideal magnetohydrodynamics and the release of free magnetic energy may occur at these locations when their thickness is small enough. The extrapolated field lines, with photospheric footpoints on both sides of QSLs, match the observed chromospheric and coronal structures (arch filament system, XBP and faint X-ray loops (FXL)). We study also the evolution of the width of the QSL located over the new negative polarity pore: the calculated QSL is very thin (typically less than 100 m) during the lifetime of the XBP, but becomes much thicker ( 104 m) after the XBP has faded. Furthermore we show that peaks in X-ray brightness propagate along the FXL with a velocity of 670 km s-1, starting from the XBP location, implying that the energy is released where the emerging bipole impacts against pre-existing coronal loops. We discuss the possible mechanism of energy transport and conclude that the energy is conducted to the remote footpoints of the FXL by a thermal front. These results strongly support the supposition that the XBP brightness and flaring are due to the interaction of different flux systems, through 3D magnetic reconnection, at QSLs.Member of the Carrera del Investigador Cientifíco, CONICET.Also at Konkoly Observatory, Budapest, Pf. 67, H-1525 Hungary.  相似文献   
24.
The main theoretical studies of the process involved in solar flares have been made in the two-dimensional approximation. However, the preliminary studies made with three field components suggest that reconnection could take place in the separatrices, the separator (intersection of separatrices) being a privileged location for this process. As a consequence the sites of flare kernels must be located on the intersections of the separatrices with the photosphere. Therefore, in order to understand the role of interacting large-scale structures in solar flares, we have analysed the topology of three-dimensional potential and linear force-free fields. The magnetic field has been modelled by a distribution of charges or dipoles located below the photosphere. This modelling permits us to define the field connectivity by the charges or the dipoles at both ends of every field line.We found that the appearance of a separator above the photosphere is more likely when a parasitic bipole emerges outside the axis that joins the main polarities and when the field lines are characteristic of a field created by dipoles. The separatrices derived in the potential and force-free hypothesis have different shapes. However, in the strong field regions where flares usually occur, the separatrices of the potential and force-free field models become closer. This property makes possible the use of the potential field, as a first estimate, for computing the location in the photosphere of the separatrices and for comparing this location with the position of observed H kernels. Displacements of the separatrices of a force-free field result from modifications of the free energy of the field. Then force-free fields have the further capability of predicting the kernel displacement. In all cases a configuration suitable for prominence support is found above the separator.  相似文献   
25.
Flare-associated large-scale (>1010 cm) X-ray brightenings, the so-called giant arches in the nomenclature of vestka and co-workers, were discovered in images obtained by the SMM Hard X-ray Imaging Spectrometer hours after the onset of two-ribbon flares. The apparent correlation between both phenomena suggested that they could be interpreted in the framework of the same model.In this paper we show that large-scale loop brightenings, of sizes similar to the giant arches, occur also in association with confined flares in complex active regions. In these cases, the relation between the large-scale structure and the underlying flare is clearly given by the magnetic field topology. We also show that energization of these structures can be partially due to the injection of suprathermal particles that are accelerated at the separator region.We discuss the implications of these results within the framework of the interacting loops picture of flares and of the giant arch phenomenology.Member of the Carrera del Investigador Científico, CONICET, Argentina.  相似文献   
26.
27.
28.
29.
We describe the interplanetary coronal mass ejections (ICMEs) that occurred as a result of a series of solar flares and eruptions from 4 to 8 November 2004. Two ICMEs/magnetic clouds occurring from these events had opposite magnetic orientations. This was despite the fact that the major flares related to these events occurred within the same active region that maintained the same magnetic configuration. The solar events include a wide array of activities: flares, trans-equatorial coronal loop disappearance and reformation, trans-equatorial filament eruption, and coronal hole interaction. The first major ICME/magnetic cloud was predominantly related to the active region 10696 eruption. The second major ICME/magnetic cloud was found to be consistent with the magnetic orientation of an erupting trans-equatorial filament or else a rotation of 160° of a flux rope in the active region. We discuss these possibilities and emphasize the importance of understanding the magnetic evolution of the solar source region before we can begin to predict geoeffective events with any accuracy.  相似文献   
30.
Recent studies show that active-region (AR) upflowing plasma, observed by the EUV-Imaging Spectrometer (EIS) onboard Hinode, can gain access to open-field lines and be released into the solar wind (SW) via magnetic-interchange reconnection at magnetic null-points in pseudo-streamer configurations. When only one bipolar AR is present on the Sun and is fully covered by the separatrix of a streamer, such as AR 10978 in December 2007, it seems unlikely that the upflowing AR plasma can find its way into the slow SW. However, signatures of plasma with AR composition have been found at 1 AU by Culhane et al. (Solar Phys. 289, 3799, 2014) that apparently originated west of AR 10978. We present a detailed topology analysis of AR 10978 and the surrounding large-scale corona based on a potential-field source-surface (PFSS) model. Our study shows that it is possible for the AR plasma to move around the streamer separatrix and be released into the SW via magnetic reconnection, which occurs in at least two main steps. We analyse data from the Nançay Radioheliograph (NRH) in a search for evidence of the chain of magnetic reconnections that we propose. We find a noise storm above the AR and several varying sources at 150.9 MHz. Their locations suggest that they might be associated with particles accelerated during the first-step reconnection process at a null point well outside of the AR. We find no evidence of the second reconnection step in the radio data, however. Our results demonstrate that even when it appears highly improbable for the AR plasma to reach the SW, indirect channels involving a sequence of reconnections can make it possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号