首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   730篇
  免费   26篇
  国内免费   3篇
测绘学   30篇
大气科学   49篇
地球物理   152篇
地质学   317篇
海洋学   26篇
天文学   100篇
综合类   4篇
自然地理   81篇
  2019年   12篇
  2018年   9篇
  2017年   12篇
  2016年   16篇
  2015年   11篇
  2014年   24篇
  2013年   33篇
  2012年   26篇
  2011年   30篇
  2010年   33篇
  2009年   40篇
  2008年   25篇
  2007年   20篇
  2006年   28篇
  2005年   16篇
  2004年   25篇
  2003年   22篇
  2002年   24篇
  2001年   14篇
  2000年   13篇
  1999年   22篇
  1998年   13篇
  1997年   8篇
  1996年   15篇
  1995年   9篇
  1994年   13篇
  1993年   10篇
  1992年   10篇
  1991年   10篇
  1990年   7篇
  1989年   8篇
  1988年   5篇
  1987年   9篇
  1986年   6篇
  1985年   13篇
  1984年   19篇
  1983年   12篇
  1982年   9篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   11篇
  1977年   7篇
  1976年   7篇
  1975年   12篇
  1974年   7篇
  1973年   7篇
  1972年   5篇
  1971年   6篇
  1968年   5篇
排序方式: 共有759条查询结果,搜索用时 312 毫秒
101.
Both hypervelocity impact and dynamic spall experiments were carried out on a series of well-indurated samples of gabbro to examine the relation between spall strength and maximum spall ejecta thickness. The impact experiments carried out with 0.04- to 0.2-g, 5- to 6-km/sec projectiles produced decimeter- to centimeter-sized craters and demonstrated crater efficiencies of 6 × 10?9 g/erg, an order of magnitude greater than in metal and some two to three times that of previous experiments on less strong igneous rocks. Most of the crater volume (some 60 to 80%) is due to spall failure. Distribution of cumulative fragment number, as a function of mass of fragments with masses greater than 0.1 g yield values of b = d(log Nf)/d log(m) ?0.5 ?0.6, where N is the cumulative number of fragments and m is the mass of fragments. These values are in agreement or slightly higher than those obtained for less strong rocks and indicate that a large fraction of the ejecta resides in a few large fragments. The large fragments are plate-like with mean values of B/A and C/A 0.8 0.2, respectively (A = long, B = termediate, and C = short fragment axes). The small equant-dimensioned fragments (with mass < 0.1 g and B ~ 0.1 mm) represent material which has been subjected to shear failure. The dynamic tensile strenght of San Marcos gabbro was determined at strain rates of 104 to 105 sec?1 to be 147 ± 9 MPa. This is 3 to 10 times greater than inferred from quasi-static (strain rate 100 sec?1) loading experiments. Utilizing these parameters in a continuum fracture model predicts a tensile strenght of σmε?[0.25–0.3], where ε is strain rate. It is suggested that the high spall strenght of basic igneous rocks gives rise to enhanced cratering efficiencies due to spall in the <102-m crater diamter strength-dominated regime. Although the impact spall mechanism can enhance cratering efficiencies it is unclear that resulting spall fragments achieve sufficient velocities such that fragments of basic rocks can escape from the surfaces of planets such as the Moon or Mars.  相似文献   
102.
Crop production in the tropics is subject to considerable climate variability caused by the El Niño-Southern Oscillation (ENSO) phenomenon that is likely to become even more pronounced during the twenty-first century. Little is known about the impact of ENSO-related drought on crop yields and food security, especially at the household level. This paper seeks to contribute to closing this knowledge gap with a case study from Central Sulawesi, Indonesia. Its main objective is to measure household resilience towards drought periods and to identify its influencing factors to deduce policy implications. Using indicators for consumption expenditures, we construct an index measuring household drought resilience; we then apply an asset-based livelihood framework to identify its determinants. Most of the drought-affected farm households are forced to substantially reduce expenditures for food and other basic necessities. Households’ drought resilience is strengthened by the possession of liquid assets, access to credit, and the level of technical efficiency in agricultural production. The results suggest a number of policy recommendations, namely improvement of the farmers’ access to ENSO forecasts, the provision of credit and savings products to facilitate consumption smoothing, and the intensification of agricultural extension in view of low levels of productivity found in agricultural production.  相似文献   
103.
One possibility to explore the subsurface layers of icy bodies is to use a probe with a “hot tip", which is able to penetrate ice layers by melting. Such probes have been built and used in the past for the exploration of terrestrial polar ice sheets and may also become useful tools to explore other icy layers in the Solar System. Examples for such layers are the polar areas of Mars or the icy crust of Jupiter’s moon Europa. However, while on Earth a heated probe launched into an ice sheet always causes melting with subsequent refreezing, the behaviour of such a probe in a low pressure environment is quite different. We report on the results of some experiments with a simple “melting probe" prototype with two different kinds of hot tips in a vacuum environment. For one of the tips the probe moved into two types of ice samples: (i) compact water ice and (ii) porous water ice with a snow (firn) like texture. It was also found that the penetration behaviour was basically different for the two sample types even when the same kind of tip was used. While in the porous sample the ice was only subliming, the phase changes occurring during the interaction of the tip with the compact ice are much more complex. Here alternating phases of melting and sublimation occur. The absence of the liquid phase has severe consequences on the performance of a “melting probe" under vacuum conditions: In this environment we find a high thermal resistance between the probe surface and the underlying ice. Therefore, only a low percentage of the heat that is generated in the tip is used to melt or sublime the ice, the bulk of the power is transferred towards the rear end of the probe. This is particularly a problem in the initial phases of an ice penetration experiment, when the probe has not yet penetrated the ice over its whole length. In the compact ice sample, phases could be observed, where a high enough gas pressure had built up locally underneath the probe, so that melting becomes possible. Only during these melting periods the thermal contact between the probe and the ice is good and in consequence the melting probe works effectively.  相似文献   
104.
Using a Surface Forces Apparatus we have measured changes in the electrical potential difference between quartz and mica surfaces that correlate with the changing quartz dissolution rate when surfaces are pressed together at relatively low pressures (2-3 atm) in aqueous electrolyte solutions of 30 mM CaCl2 at 25 °C. No detectable dissolution or voltage potential difference is measured in symmetrical systems (e.g. mica-mica or quartz-quartz) or between dry surfaces subjected to similar pressures, indicating that the dissolution can not be attributed to a simple pressure effect, slow aging (creep), or plastic deformation of the quartz surface. In quartz-mica systems brought together under pressure or to close proximity in electrolyte solution, the onset of quartz dissolution is marked by a sudden, rapid decrease in the quartz thickness at initial rates in the range from 1 to 4 nm/min, which after several hours settles into a constant rate of approximately 0.01 nm/min (∼5 μm/yr). Concomitantly, the potential drops to a constant value once the dissolution rate has stabilized. The decrease in the decay rate is interpreted as being due to saturation of the confined aqueous film and/or to the buildup of a Stern layer on the quartz surface, and the constant rate as being due to the steady-state chemical dissolution and diffusion of the dissolving silica into the surrounding reservoir. The dissolution is ‘non-uniform’: the surfaces become rough as dissolution proceeds, with the appearance of pits in a manner analogous to corrosion. On occasions, the process of rapid dissolution followed by a gradual transition to steady dissolution repeats itself, suggesting that the pit structure and Stern layer are fragile and subject to collapse and/or expulsion from the gap. Preliminary experiments on the dissolution of multi-faceted milled quartz particles (∼1.0 μm diameter) compressed between two muscovite surfaces suggest an asymmetry in the dissolution rates at different crystallographic planes. The origin of the electrical potential is interpreted as arising from the overlapping of the electric double-layers of two dissimilar surfaces when they are forced into close proximity. This electrical potential difference, for as yet unknown reasons, appears to be the driving force for the dissolution, rather than pressure.  相似文献   
105.
106.
We combine N -body simulations of structure growth with physical modelling of galaxy evolution to investigate whether the shift in cosmological parameters between the first- and third-year results from the Wilkinson Microwave Anisotropy Probe ( WMAP ) affects predictions for the galaxy population. Structure formation is significantly delayed in the WMAP3 cosmology, because the initial matter fluctuation amplitude is lower on the relevant scales. The decrease in dark matter clustering strength is, however, almost entirely offset by an increase in halo bias, so predictions for galaxy clustering are barely altered. In both cosmologies, several combinations of physical parameters can reproduce observed, low-redshift galaxy properties; the star formation, supernova feedback and active galactic nucleus feedback efficiencies can be played off against each other to give similar results. Models which fit observed luminosity functions predict projected two-point correlation functions which scatter by about 10–20 per cent on large scale and by larger factors on small scale, depending both on cosmology and on details of galaxy formation. Measurements of the pairwise velocity distribution prefer the WMAP1 cosmology, but careful treatment of the systematics is needed. Given present modelling uncertainties, it is not easy to distinguish between the WMAP1 and WMAP3 cosmologies on the basis of low-redshift galaxy properties. Model predictions diverge more dramatically at high redshift. Better observational data at   z > 2  will better constrain galaxy formation and perhaps also cosmological parameters.  相似文献   
107.
Hafnium (Hf) and zirconium (Zr) concentrations measured in over 4100 agricultural soil samples from Europe were assessed with the focus on their relationship to the distribution of aeolian deposits, such as loess and coversands. Comparison of extractable (aqua regia; ICP‐MS) and total (XRFS) concentrations shows that only 1.0 to 1.7% of the total Hf and Zr is chemically extractable because of the resistant nature of their host minerals. Resistate minerals, such as zircon, are commonly found in the predominantly silty fraction of loess deposits. In this study a statistical analysis of total Hf and Zr soil data from areas with and without loess was carried out to derive threshold values of 10 mg kg?1 (Hf) and 318 mg kg?1 (Zr). These values were subsequently applied across the project area in an attempt to indicate the presence of aeolian deposits. The spatial distribution of above‐threshold concentrations suggests a more extensive and coherent loess belt across central and eastern Europe, providing additional evidence of loess across Brittany, Aquitaine and near the Vosges mountains in France as well as in the basins of central and northern Spain. Above‐threshold concentrations were also detected in loess regardless of its thickness, emphasising the importance of the abundance of zircon in the upper part of the soil profile rather than the actual thickness of the deposit. Soil data however, failed to indicate various loess facies within most of the Pannonian Basin, suggesting that this approach only works where deposits contain a sufficient amount of zircon. This may also explain why the extensive coversands across northern Germany and Poland were largely undetected. This study demonstrates that continental‐scale soil geochemical data can help identify and map the distribution of zircon‐rich loess and coversand, and subsequently enhance and improve current knowledge of the extent of these deposits.  相似文献   
108.
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.  相似文献   
109.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号