首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   942篇
  免费   53篇
  国内免费   8篇
测绘学   20篇
大气科学   73篇
地球物理   198篇
地质学   373篇
海洋学   88篇
天文学   182篇
综合类   4篇
自然地理   65篇
  2023年   5篇
  2022年   6篇
  2021年   18篇
  2020年   20篇
  2019年   14篇
  2018年   33篇
  2017年   30篇
  2016年   41篇
  2015年   31篇
  2014年   43篇
  2013年   56篇
  2012年   52篇
  2011年   60篇
  2010年   41篇
  2009年   65篇
  2008年   54篇
  2007年   52篇
  2006年   51篇
  2005年   42篇
  2004年   25篇
  2003年   34篇
  2002年   36篇
  2001年   28篇
  2000年   20篇
  1999年   17篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1967年   1篇
排序方式: 共有1003条查询结果,搜索用时 15 毫秒
901.
 Mafic and ultramafic rocks sampled in the Garrett transform fault at 13°28′S on the East Pacific Rise (EPR) provide insight on magmatic processes occurring under a fast-spreading ridge system. Serpentinized harzburgite from Garrett have modal, mineral and bulk chemical compositions consistent with being mantle residue of a high degree of partial melting. Along with other EPR localities (Terevaka transform fault and Hess Deep), these harzburgites are among the most residual and depleted in magmatophile elements of the entire mid-ocean ridge system. Geothermometric calculations using olivine-spinel pairs indicate a mean temperature of 759 ± 25 °C for Garrett residual harzburgite similar to the average of 755 °C for tectonite peridotites from slow-spreading ridges. Results of this study show that mid-ocean ridge peridotites are subject to both fractional melting and metasomatic processes. Evidence for mantle metasomatism is ubiquitous in harzburgite and is likely widespread in the entire Garrett peridotite massif. Magma-harzburgite interactions are very well preserved as pyroxenite lenses, plagioclase dunite pockets or dunitic wall rock to intrusive gabbros. Abundant gabbroic rocks are found as intrusive pockets and dikes in harzburgite and have been injected in the following sequence: olivine-gabbro, gabbro, gabbronorite, and ferrogabbro. The wide variety of magmas that crystallized into gabbros contrast sharply with present-day intratransform basalts, which have a highly primitive composition. Ferrogabbro dikes have been intruded at the ridge-transform intersection and as they represent the last event of a succession of gabbros intrusive into the peridotite, they likely constrain the origin of the entire peridotite massif to the same location. In peridotite massifs from Pacific transform faults (Garrett and Terevaka), primitive to fractionated basaltic magmas have flowed and crystallized variable amounts of dunite (±plagioclase) and minor pyroxenite, followed by a succession of cumulate gabbroic dikes which have extensively intruded and modified the host harzburgitic rocks. The lithosphere and style of magmatic activity within a fast-slipping transform fault (outcrops of ultramafic massif, discontinuous gabbro pockets intrusive in peridotite, magnesian and phyric basalts) are more analogous to slow-spreading Mid-Atlantic Ridge type than the East Pacific Rise. Received: 13 October 1997 / Accepted: 5 February 1999  相似文献   
902.
The Durance fault area is located in South EasternFrance. This fault system is characterized byhistorical earthquakes (one every century, since 1509,with a magnitude between 5.0 and 5.3). This is theonly fault in France with such a periodic historicalseismic activity. In order to study an active fault ina moderate seismic context, the IPSN (Institute forNuclear Safety and Protection) decided to install apermanent network in 1992, surrounding the fault area.Such a permanent seismic network has been installed inthe french Pyrenees in the Arette area (Gagnepain etal., 1980). While the Arette network covers a regionaffected by several major faults, our network isdevoted to the study of the specific Durance fault.Major historical earthquakes are clearly associatedwith this structure. From an instrumental point ofview, few earthquakes have been recorded since 1962with the national network. Our network shows a smallseismic activity, with the epicenters well alignedalong the fault direction. Moreover, focal mechanismscomputed for two events agree with the regionalmicrostructural studies (Cushing et al., 1997).Finally, a study of the shear wave splittingunderlines preferential S wave polarization for twostations. The H/V ratio on noise microtremors has beencomputed for each station in order to check theirpositions in term of site effects. It does not exhibitany amplification effect (except for two stations).The comparisons with H/V ratio on earthquake datasetshow the important biases we can obtain with realearthquakes.  相似文献   
903.
Paddy rice agriculture is practiced in both rain-fed and irrigated ecosystems in the Philippines. However, small farms are prevalent in the region, and current ...  相似文献   
904.
A general set of 2-D equations for the conservation of mass and momentum of a two-phase system of melt in a deformable matrix is used to derive analytic solutions for the corner flow of a constant porosity melt-saturated porous medium. This solution is used to model the melt extraction processes at mid-ocean ridges and island arcs. The models indicate that flow of melt is controlled by pressure gradients induced by the Laplacian of the matrix velocity field and by the dimensionless percolation velocity which measures the relative contributions of buoyancy-driven flow to advection by the matrix. The models can account for many features of ridge and arc volcanism. Matrix corner flow at ridges causes melt to be drawn to the ridge axis enabling the extraction of small melt fractions from a wide melting zone while showing a narrow zone of volcanism at the surface. At subduction zones melts do not percolate vertically but are drawn to the junction of the upper plate and subducting slab by corner flow in the mantle wedge. For subduction zones, if the dimensionless percolation velocity is below a critical value, slab-derived fluids will be carried down by the matrix and cannot interact with the mantle wedge. The geochemistry of island arcs will be controlled by the geometry of melt streamlines. This model is consistent with geophysical and geochemical data from the Aleutian arc.  相似文献   
905.
Rare earth element mobility in the Roffna Gneiss,Switzerland   总被引:1,自引:0,他引:1  
The Roffna Gneiss, a deformed Hercynian granite porphyry within the Penninic nappes of eastern Switzerland, underwent extreme cataclasis with the progressive development of phengite towards the margins of the nappe under conditions of the glaucophane schist to greenschist facies. This resulted in the selective mobilization of major and trace elements over distances of 10's to 100's of meters and the resetting of the Rb — Sr whole rock isotopic systems some 100 my ago. The component ratios and compositionvolume relationships of progressively deformed gneiss samples studied here suggest that this process was essentially isovolumetric. The mineralogy of the deformation sequence appears to have been controlled by a reaction involving the breakdown of microcline, albite and biotite and the formation of phengite and quartz. The fluids introduced Mg and H2O, promoting the development of phengite, and removed the Na being released by the breakdown of albite. The fluids were most probably derived from the surrounding Triassic carbonates and quartzites. These relatively high fO2 and carbonate rich fluids also introduced rare earth elements (REE) into the gneiss. The gneiss was progressively enriched in Eu up to 60%, Y up to 40%, and Yb up to 100%. These enrichments are associated with the development of epitaxial xenotime around zircon in the most phengite-rich sample. While the REE were mobile, uranium and thorium were essentially immobile. The formation of xenotime was suggested to explain the observed heavy REE enrichment when large differences in the REE contents were found for replicate analyses using HF and then lithium metaborate for dissolution. These differences arose because xenotime, like monazite, can be difficult (if not impossible) to dissolve in hydrofluoric acid. Due to the possibility of incomplete sample dissolution, we now recommend fusion with lithium metaborate for all REE, Lu — Hf or Sm — Nd studies.  相似文献   
906.
18O16O, 13C12C and 87Sr86Sr ratios have been measured on the same samples for carbonatite complexes. The results show that besides the ‘carbonatite box’ of Tayloret al. (1967) there exist higher δ18O and δ13C values than can be explained by late magmatic or deuteric processes. These processes correspond to high concentrations of CO2 and lead to big enrichments in 18O and 13C as well as in some ‘volatile’ elements. Strontium results are consistent with a model of selective contamination of deep-seated material by highly radiogenic strontium. The whole study leads to the opinion that parent magmas of carbonatites differentiated in a crustal environment with or without significant contamination.  相似文献   
907.
A digitised tectonic model, initially built up for regionalization of Rayleigh waves, is applied to the geoid in order to define the mean geoid heights of the following regions: 3 oceanic regions, namely young oceans (0–30 Ma) middle-aged oceans (30–80 Ma) and old oceans (> 80 Ma); trenches and subduction zones; mountains; and shields. The relative importance of the deep sources is damped or enhanced by progressively removing or adding the lower or higher degrees of the geoid. A statistical approach allows us to quantify the success of the correlation between tectonics and these filtered geoids.Significant variations are observed in these correlations for oceanic regions (including subduction zones) with a cut-off between degree-2 and higher degrees. For degrees ? 3, a well-known trend is observed: high values correspond to young oceans (ridges) and low values to old oceans, high values are also obtained for subduction zones. On the contrary, and unexpectedly, for the degree-2 alone a trend reversal is observed: geoid lows are observed over ridges and geoid highs over old oceans; trenches give the same geoid amplitude than old oceans. Clearly this denotes a degree-2 convection pattern connected to plate tectonics. In addition it is shown that the minimum and maximum inertia axes of the surface distribution of young oceans, and independently of old oceans and trenches, coincide with the Earth's equatorial inertia axes (74°E and 164°E), i.e., with the equatorial extremes of the degree-2 geoid.Plate tectonics is uncorrelated with the polar anomaly of the degree-2 geoid, namely the flattening which is not accounted for by Earth rotation. A north-south axisymmetric convection with a degree-2 pattern is proposed to explain this extra flattening; this model is supported by the latitude dependence of the depth of oceanic ridges.  相似文献   
908.
Since the Carboniferous, tropical latitudes have been the site of formation of many economic coal deposits, most of which have a restricted range of mineralogical composition as a result of their depositional environment, climatic conditions, and diagenesis. Mineralogical and microscopic investigations of tropical peats from Tasek Bera, Peninsular Malaysia, were performed in order to better understand some of these factors controlling the nature, distribution and association of inorganic matter in peat-forming environments. Distribution and nature of the inorganic fraction of peat deposits give insight into the weathering conditions and detrital input into the mire system. Because the inorganic composition of peat deposits is determined by plant communities, height of water table, and climate, the results of the quantitative and qualitative analysis can be used to reconstruct palaeoclimatic conditions.Tasek Bera is a peat-accumulating basin in humid tropical Malaysia with organic deposits of low- to high-ash yield and thus representative of many ancient peat-forming environments. Clay minerals dominate the mineralogical composition of the peat and organic-rich sediments, while quartz and clays dominate the underlying siliciclastic deposits. Kaolinite is the most abundant clay mineral in the organic deposits with minor amounts of illite and vermiculite. Particle size analyses indicate that >50% of the inorganic detrital fraction is <2 μm. Most detrital quartz grains range in size from fine silt to fine sand. The fine sand fraction accounts for a maximum of 5 wt.% of the inorganic constituents. In addition, abundant biogenic and non-biogenic, Al- and Si-rich amorphous matter occur. In the ombrotrophic (low-nutrient) environment, biogenic inorganic material contributes up to >75% of the ash constituents. As a consequence, the vegetational communities make an important contribution to the inorganic and overall ash composition of peats and coals. The ash content of the often inundated peat consists on average of 10% opaline silica from diatoms and sponge spicules, while the ash of the top deposits may have up to 50% biogenic silica. Hence, Al- and Si-hydroxides and the opaline silica from diatoms and sponges represent a large repository of Al and Si, which may form the basis of mineral transformation, neoformation and alteration processes during coalification of the peat deposits. As a result, most coal deposits from paleotropical environments are anticipated to have little to no biogenic inorganic material but high amounts of secondary clays, such as kaolinite (detrital kaolinite, resilisified kaolinite, or desilisified gibbsite) or illite, and various amounts of detrital and authigenetic quartz.  相似文献   
909.
We present U, Th, and Pa isotope data for young lavas from Costa Rica and Nicaragua in the Central American arc. Thorium isotopic ratios for Costa Rica and Nicaragua differ dramatically: Costa Rican lavas are characterized by low (230Th/232Th) (1 to 1.2) and, for four out of five lavas, (230Th/238U) greater than unity. Nicaraguan lavas have high (230Th/232Th) (2.2 to 2.7) and, for five of six samples, (230Th/238U) less than unity. All lavas have (231Pa/235U) greater than unity, with initial values ranging from 1.27 to 1.77, but those from Costa Rica have larger 231Pa excesses. There is a broad positive correlation between (231Pa/235U) and (230Th/238U) similar to the worldwide trend for arcs outlined by Pickett and Murrell (1997), although many of the Nicaraguan lavas skirt the high end of that trend. In greater detail, the Central American data appear to divide into separate high-(231Pa/235U) and low-(231Pa/235U) tiers. These tiers may be different because of either different residence times in the crust or different proportions of sedimentary components from the slab.Substantial (231Pa/235U) excesses (>1.5) in both Costa Rica and Nicaragua require a melting process that allows for enhanced daughter (231Pa) ingrowth. With increasing U addition, (231Pa/230Th) increases in a manner that cannot be explained adequately by aging of fluid components before partial melting and eruption. Thus, either some 231Pa is added from the slab, or melting-enhanced 231Pa ingrowth is greater in sources that have experienced a larger amount of slab-derived flux and a higher extent of melting. These observations can be explained if regions that have undergone greater extents of fluxing and melting have experienced these processes over a longer time interval than those that have had little flux added and little melt extracted. We propose a flux-ingrowth melting model in which corner flow in the mantle wedge supplies fresh hot mantle into a zone of slab fluid addition. Partial melting occurs in response to this fluxing. We assume critical melting at low porosity (∼10−3), rapid fluid flux to the melting region, and rapid melt transport. Solid mantle traverses the melting region over 105 to 106 yr, thereby allowing 231Pa and 230Th ingrowth from U retained in the residues of melt extraction. Magmas are aggregated from all parts of the melting regime, mixing melts from incipiently fluxed regions with those from sources that have experienced more extensive fluid addition, partial melting, and daughter nuclide ingrowth. With suitable assumptions about component addition from the slab, this flux-ingrowth model matches a wide range of U-series and trace element data from Costa Rican and Nicaraguan lavas, with required average extents of melting of ∼1 to 3% and 7 to 15%, respectively. Upwelling and/or extensive melt-rock reaction are not required to explain large (231Pa/235U) excesses in Central America or other arcs. On Th isotope equiline plots, the model produces linear arrays that resemble isochrons but that have no age significance. Instead, these arrays are generated by mixing of melts from sources that have experienced fluid addition and partial melting over a range of time intervals, as seems likely in arc source regions. Finally, the flux-ingrowth model predicts considerable 226Ra excesses for integrated magmas. If we assume that 226Ra is added continuously with the slab-derived fluid, the model predicts large and increasing (226Ra/230Th) with increasing melting and slab-component addition, without requiring the addition of a distinct late fluid.  相似文献   
910.
The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4–5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10–25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a very oblique, apparently locked subduction zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号