首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1419篇
  免费   55篇
  国内免费   7篇
测绘学   29篇
大气科学   126篇
地球物理   284篇
地质学   437篇
海洋学   104篇
天文学   354篇
综合类   4篇
自然地理   143篇
  2021年   9篇
  2020年   12篇
  2019年   20篇
  2018年   34篇
  2017年   39篇
  2016年   32篇
  2015年   31篇
  2014年   35篇
  2013年   65篇
  2012年   24篇
  2011年   40篇
  2010年   30篇
  2009年   63篇
  2008年   59篇
  2007年   48篇
  2006年   61篇
  2005年   51篇
  2004年   64篇
  2003年   55篇
  2002年   58篇
  2001年   49篇
  2000年   39篇
  1999年   21篇
  1998年   34篇
  1997年   17篇
  1996年   18篇
  1995年   22篇
  1994年   21篇
  1993年   17篇
  1992年   13篇
  1991年   13篇
  1990年   16篇
  1989年   15篇
  1988年   16篇
  1987年   18篇
  1986年   25篇
  1985年   23篇
  1984年   15篇
  1983年   28篇
  1982年   26篇
  1981年   25篇
  1980年   26篇
  1979年   18篇
  1978年   11篇
  1977年   12篇
  1976年   17篇
  1975年   13篇
  1974年   12篇
  1973年   12篇
  1971年   11篇
排序方式: 共有1481条查询结果,搜索用时 140 毫秒
111.
Matt Bradshaw 《Area》2001,33(2):202-211
Contracts with, and member checks by, research participants are increasingly recommended in qualitative research in human geography. However, differences in qualitatively researching 'the powerful', as opposed to researching 'down' mean that contracts and member checks may need to be approached with caution regarding the former. The possibility of the censorship of critique by powerful research participants is exemplified in this article, and a number of more general dilemmas in qualitatively researching 'up' are also discussed. Finally, some choices which might help address possible difficulties in qualitatively researching the powerful are outlined.  相似文献   
112.
The mineral matter in the eight reference North American coal samples of the Argonne Premium Coal series has been investigated on a quantitative basis using X-ray diffraction (XRD) techniques. X-ray diffraction data obtained from electronic low-temperature (oxygen–plasma) ash (LTA) residues, from ashes produced by heating the coals in air at 370°C, and also from the raw coals themselves, were evaluated using an interactive data processing system ( ™) based on Rietveld interpretation methods. The results from the three types of material (LTA, 370°C ash and raw coal) were compared for each sample. This allowed the components present in the raw coals in crystalline form to be recognised separately from mineral artifacts produced, particularly in the low-rank coals, from interaction of organically associated elements (Ca, S, etc.) during the two ashing processes.After the allowance for the production of any artifacts, the quantitative mineral assemblages identified from XRD of the raw coals were found to be consistent, even for coals having a relatively low ash percentage (around 5%), with the results obtained from the respective mineral concentrates prepared by the ashing methods. The effects of heating the coal to 370°C could also be distinguished, relative to the raw coal or the LTA, through changes in components such as pyrite and the clay minerals.Although some areas of uncertainty exist, particularly with magnesium in the low-rank coals, the calculated chemical compositions of the coal ash derived from the mineral mixtures identified for each coal were also found to be consistent with the results of direct chemical analysis of the respective coal ash materials.  相似文献   
113.
Ted Munn founded Boundary-Layer Meteorology in 1970 and served as Editor for 75 volumes over a 25 year period. This short article briefly reviews Ted's scientific career with the Atmospheric Environment Service (of Canada), the International Institute for Applied Systems Analysis in Austria and with the Institute of Environmental Studies at the University of Toronto, and as editor of this journal.  相似文献   
114.
Boundary-layer flow over topography: Impacts of the Askervein study   总被引:2,自引:0,他引:2  
One of the objectives of the Askervein Hill Project was to obtain a comprehensive and accurate dataset for verification of models of flow and turbulence over low hills. In the present paper, a retrospective of the 1982 and 1983 Askervein experiments is presented. The field study is described in brief and is related to similar studies conducted in the early 1980s. Data limitations are discussed and applications of numerical and wind-tunnel models to Askervein are outlined. Problems associated with model simulations are noted and model results are compared with the field measurements.  相似文献   
115.
116.
Paleovegetation maps were reconstructed based on a network of pollen records from Australia, New Zealand, and southern South America for 18 000, 12000, 9000, 6000, and 3000 BP and interpreted in terms of paleoclimatic patterns. These patterns permitted us to speculate on past atmospheric circulation in the South Pacific and the underlying forcing missing line mechanisms. During full glacial times, with vastly extended Australasian land area and circum-Antarctic ice-shelves, arid and cold conditions characterized all circum-South Pacific land areas, except for a narrow band in southern South America (43° to 45°S) that might have been even wetter and moister than today. This implies that ridging at subtropical and mid-latitudes must have been greatly increased and that the storm tracks were located farther south than today. At 12000 BP when precipitation had increased in southern Australia, New Zealand, and the mid-latitudes of South America, ridging was probably still as strong as before but had shifted into the eastern Pacific, leading to weaker westerlies in the western Pacific and more southerly located westerlies in the eastern Pacific. At 9000 BP when, except for northernmost Australia, precipitation reached near modern levels, the south Pacific ridges and the westerlies must have weakened. Because of the continuing land connection between New Guinea and Australia, and reduced seasonality, the monsoon pattern had still not developed. By 6000 BP, moisture levels in Australia and New Zealand reached their maximum, indicating that the monsoon pattern had become established. Ridging in the South Pacific was probably weaker than today, and the seasonal shift of the westerlies was stronger than before. By 3000 BP essentially modern conditions had been achieved, characterized by patterns of high seasonal variability.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   
117.
Organic-rich samples derived from a Middle Cambrian Formation in the Georgina Basin, and from the Middle Proterozoic of the McArthur Basin in northern and central Australia, yielded alginite ranging from immature oil shale material to overmature residue. A maturation scale has been developed based on the thermal evolution of alginite as determined from reflectance and fluorescence. The coalification path of alginite is marked by jumps in contrast to the linear path of wood-derived vitrinite. Six zones have been recognised, ranging from undermature (zone I), through the mature (zones II/III), followed by a stable stage of no change (zone IV) to the overmature (zones V and VI). The onset of oil generation in alginite as evident from the present study is at 0.3% Ro Alg. and is expressed in a change of fluorescence from yellow to brown, and a coalification jump from 0.3 to 0.6% Ro of Alg. In many boreholes zone III can be distinguished between 0.6 and 0.8% Ro of Alg. where subsequent oil generation occurs. Zones II and III represent the oil window.A zone of little or no change designated zone IV, at of alginite follows zones II/III. A marked coalification jump characterises zone V, where a pronounced change in reflectance occurs to >1.0% Ro Alg., signifying peak gas generation. The border of oil preservation lies at the transition of zone V and VI, at 1.6% Ro Alg. In zone VI gas generation only occurs.Comparison of reflectance results with experimental and geochemical pyrolysis data supports high activation energies for hydrocarbon generation from alginite, and therefore a later onset of oil generation than other liptinite macerals (i.e. cutinite, exinite, resinite) as well as a narrow oil window.Transmission electron microscopy (TEM) confirms that alginite does not go through a distinct intermediate stage but that the percentage of unreacted organic matter decreases as maturation proceeds. A clear distinction can be made in TEM between immature alginite, alginite after oil generation, and alginite residue following gas generation. Alginite beyond 1.6% Ro acquires very high densities and the appearance of inertinite in TEM.Bitumens/pyrobitumens make a pronounced contribution to the organic matter throughout the basins and have been shown to effect pyrolysis results by suppressing Tmax. The bitumens/pyrobitumens have been divided into four groups, based on their reflectance and morphology, which in turn appears to be an expression of their genetic history. Their significance is in aiding the understanding of the basins' thermal history, and the timing of oil and gas generation.  相似文献   
118.
Primitive olivine-mica-K-feldspar lamprophyre dykes, dated at 1831 ± 6 Ma, intrude lower greenschist facies rocks of the Early Proterozoic Pine Creek Inlier, of northern Australia. They are spatially, temporally and probably genetically associated with a post-tectonic composite granite-syenite pluton (Mt. Bundey pluton). The dykes have unusually high contents of large-ion-lithophile (LILE) and LREE elements (e.g. Ba up to 10,000 ppm, Ce up to 550 ppm, K2O up to 7.5 wt. %) that resemble the concentrations found in the West Kimberley olivine and leucite lamproites. However, mineralogically the Mt. Bundey lamprophyres resemble shoshonitic lamprophyres and lack any minerals diagnostic of lamproites; leucite or leucite-pseudomorphs are absent. Mineral compositions are also unlike those in lamproites: micas contain higher Al2O3 than lamproitic mica; amphiboles are secondary actinolites after diopside; and oxides consist of zincian-chromian magnetite and groundmass magnetite. Heavy mineral concentrates contain mantle-derived xenocrysts of magnesiochromite, pyrope, Cr-diopside and rutile indicating a depth of sampling > 70 km. The Mt. Bundey lamprophyres are non-peralkaline to borderline peralkaline (molar (K + Na)/Al = 0.8 − 1.0) and potassic rather than ultrapotassic (molar K/Na < 2.5). They have distinctive major element compositions (≈46−49 wt. % SiO2, ≈1.5−2 wt. % MgO, ≈7 wt. % CaO), and element ratios (e.g. molar Al/Ti ≈10, K/Na ≈2) that indicate they are best classified amongst transitional lamproites, i.e. potassic rocks such as cocites, jumillites and Navajominettes, that have geochemical characteristics transitional between Groups I and III. (Foley et al., 1987). The Mt. Bundey lamprophyres have LILE enrichment patterns that resemble the W. Kimberley pamproites but have moderate negative Ta---Nb---Ti anomalies and HREE abundances that are closely similar to the jumillites of southeastern Spain and Mediterranean-type lamproites. Single-stage modelling of Rb---Sr data is consistent with enrichment of the source-region of the Mt. Bundey lamprophyres ≈ 120–170 Ma before partial melting; i.e. at 1.95–2.10 Ga. Source enrichment does not appear to be associated with subduction processes, but may instead relate to incipient rifting of the Archaean basement. Negative Ta---Nb---Ti anomalies in the Mt. Bundey dykes may, therefore, relate to stability of residual titanate minerals in an oxidized subcontinental mantle source. This view is supported by high Fe3+/ΣFe ratios of mantle-derived magnesiochromite xenocrysts which indicate oxidized mantle conditions (ƒo2 ≈ FMQ + 1 long units), and by the presence of xenocrystic Cr-bearing rutile. Although the Mt. Bundey dykes have sampled upper mantle material, the oxidized nature of the magma source-region, and of the magma itself, suggests that conditions may not be favourable for diamond survival at depth nor for diamond transport in transitional lamproite magmas of this kind.  相似文献   
119.
Results are presented from a numerical experiment of wind and shear stress profile development away from a shore line; the water surface is assumed to obey the Charnock-Ellison relation between surface roughness and friction velocity. In typical cases the upwind, land surface is rough relative to the sea and the velocity and shear stress results are qualitatively similar to those for flows from relatively rough to relatively smooth solid surfaces. In the present case, however, the downwind surface roughness and friction velocity vary with position and we find that wind profile development may play a significant role in the relationship between sea surface roughness and fetch.  相似文献   
120.
Five lizardite-chrysotile type serpentinites from California, Guatemala and the Dominican Republic show oxygen isotope fractionations of 15.1 to 12.9 per mil between coexisting serpentine and magnetite (O18 magnetite=–7.6 to –4.6 per mil relative to SMOW). Nine antigorites (mainly from Vermont and S. E. Pennsylvania) show distinctly smaller fractionations of 8.7 to 4.8 per mil (O18 magnetite=–2.6 to +1.7 per mil). Two lizardite and chrysotile serpentinites dredged from the Mid-Atlantic Ridge exhibit fractionations of 10.0 and 12.4 per mil (O18 magnetite=–6.8 and –7.9 per mil, respectively), whereas an oceanic antigorite shows a value of 8.2 per mil (O18 magnetite=–6.2). These data all clearly indicate that the antigorites formed at higher temperatures than the chrysotilelizardites. Electron microprobe analyses of magnetites from the above samples show that they are chemically homogeneous and essentially pure Fe3O2. However, some magnetites from certain other samples that show a wide variation of Cr content also give very erratic oxygen isotopic results, suggesting non-equilibrium. An approximate serpentine-magnetite geothermometer curve was constructed by (1) extrapolation of observed O18 fractionations between coexisting chlorites and Fe-Ti oxides in low-grade pelitic schists whose isotopic temperatures are known from the quartz-muscovite O18 geothermometer, and (2) estimates of the O18 fractionation factor between chlorite and serpentine (assumed to be equal to unity). This serpentine-magnetite geothermometer suggests approximate equilibrium temperatures as follows: continental lizardite-chrysotile, 85° to 115° C; oceanic lizardite and chrysotile, 130° C and 185° C, respectively; oceanic antigorite, 235° C; and continental antigorites, 220° to 460° C.Contribution No. 2029 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号