首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   5篇
地球物理   13篇
地质学   17篇
海洋学   5篇
天文学   25篇
自然地理   8篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1977年   1篇
  1974年   2篇
  1972年   2篇
排序方式: 共有74条查询结果,搜索用时 0 毫秒
71.
铂族元素中子活化分析的微型镍锍试金预富集方法研究   总被引:5,自引:1,他引:5  
李晓林  M.  Ebihara 《岩矿测试》2005,24(3):167-170
建立了适用于小样品(≤1g)中铂族元素分离富集的微型镍锍试金流程。讨论了试金熔剂、捕集剂的用量和比例,以及熔炼条件。化学回收实验显示铂族元素全流程回收率≥90%,分析精密度(RSD,n=6)为4.3%~7.7%。标准参考物质分析显示分析值与标准值基本吻合,表明所建立的微型镍锍试金流程是可靠的。  相似文献   
72.
We have analyzed by RNAA 25 aubrite and 9 diogenite samples for 13 to 29 siderophile, volatile, and lithophile trace elements. Both meteorite classes show a typically igneous siderophile element pattern, with Ir, Os, Re, Ge more depleted than Au, Ni, Pd, Sb. But aubrites tend to have about 10 × higher abundances (10?3 ? 10 ? 4 × Cl for the first 4 and 10?2?10?3 × Cl for the last 4 siderophiles), apparently reflecting smaller metal/silicate distribution coefficients at lowerf(O2), or less complete segregation of metal. Se is surprisingly abundant in aubrites (up to 0.4 × Cl), but Te is less so (SeTe ? 5 × Cl), apparently due to its stronger siderophile character. Other volatiles (Ag, Zn, In, Cd, Bi, T1) show depletions intermediate between lunar dunite and the Earth's mantle.Of 7 aubrites analyzed for REE (Ce, Nd, Eu, Tb, Yb, Lu), 6 are depleted in REE (0.08?0.5 × Cl) and 5 show negative Eu anomalies (the exceptions are Bishopville and Mt. Egerton silicate). This supports an igneous origin, as already noted by Boynton and Schmitt (1972). No samples of the complementary, basaltic and feldspathic rocks have been found thus far, but one of our samples of Khor Temiki dark is a candidate for the basalt. It is 5?7 × enriched in REE and only slightly less so in Rb, Cs, and U. Though shocked and enriched in siderophiles to ~0.05 × Cl, it apparently represents a new meteorite class.Three diogenites analyzed for REE show very diverse patterns, from strongly depleted in light REE for Tatahouine (Ce = 0.01 × Cl) to flat for Garland (~2.5 × Cl). The data confirm the trends found by Fukuokaet al. (1977) as well as their interpretations.Factor analysis shows several parallel groupings for aubrites and diogenites: siderophiles (Re, Ir, Os, Pd, Ge), chalcophiles (Se, Te), volatiles (Ag, In, Tl) and incompatibles (U, REE, and Cs or Rb). But there are some differences for elements such as Ni, Sb, Cd, Bi, Au, and Zn, most of which behave more sensibly in aubrites than in diogenites.Several element pairs that differ greatly in volatility (Cs-U, Ge-Ir) correlate closely in aubrites, in approximately Cl-chondrite proportions. These correlations, and other lines of evidence, suggest strongly that aubrites originated by igneous processes in their parent body, not by direct nebular condensation. The source material may have resembled EL chondrites in oxidation state and depletion of refractories, metal, and volatiles.  相似文献   
73.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
74.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号