首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   7篇
  国内免费   1篇
测绘学   4篇
大气科学   11篇
地球物理   36篇
地质学   22篇
海洋学   24篇
天文学   30篇
自然地理   15篇
  2024年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   13篇
  1999年   3篇
  1998年   9篇
  1997年   7篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1973年   4篇
  1972年   2篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
41.
Using the rectangular equations of motion for the restricted three-body problem a comparison is made of the integration of these equations by the Encke method and by a set of perturbational equations. Each set of differential equations is integrated using Taylor series expansions where the coefficients of the powers of time are determined by recurrence relations. It is shown that for very small perturbations the use of the perturbational equations is more efficient than the use of the Encke method. A discussion is also given of when Cowell's method is more efficient than either of these techniques.  相似文献   
42.
 Mount Rainier is one of the most seismically active volcanoes in the Cascade Range, with an average of one to two high-frequency volcano-tectonic (or VT) earthquakes occurring directly beneath the summit in a given month. Despite this level of seismicity, little is known about its cause. The VT earthquakes occur at a steady rate in several clusters below the inferred base of the Quaternary volcanic edifice. More than half of 18 focal mechanisms determined for these events are normal, and most stress axes deviate significantly from the regional stress field. We argue that these characteristics are most consistent with earthquakes in response to processes associated with circulation of fluids and magmatic gases within and below the base of the edifice.Circulation of these fluids and gases has weakened rock and reduced effective stress to the point that gravity-induced brittle fracture, due to the weight of the overlying edifice, can occur. Results from seismic tomography and rock, water, and gas geochemistry studies support this interpretation. We combine constraints from these studies into a model for the magmatic system that includes a large volume of hot rock (temperatures greater than the brittle–ductile transition) with small pockets of melt and/or hot fluids at depths of 8–18 km below the summit. We infer that fluids and heat from this volume reach the edifice via a narrow conduit, resulting in fumarolic activity at the summit, hydrothermal alteration of the edifice, and seismicity. Received: 10 February 1999 / Accepted: 26 June 1999  相似文献   
43.
We present measurements of the distribution of the OH masers at 1665 and 1667 MHz towards the cometary ultracompact H  ii region in the complex G34.3+0.2. The results are based on observations made in both senses of circular polarization with a very long baseline interferometry (VLBI) array having an angular resolution of 5×20 mas2. 38 maser features are identified in the region. 33 of these lie on an arc at the edge of the cometary H  ii region. Five are located in a cluster offset toward the north-east by 3 arcsec, and are probably associated with an independent ultracompact H  ii region. There is a velocity gradient of 30 km s−1 pc−1 across the arc. We identify five Zeeman pairs and determine that the magnetic field varies between 1 and 7 mG, but is always directed away from the Earth.
The OH masers may arise in clumps in a shell of gas in a bow shock caused by the motion of the exciting star through the molecular cloud. The stand-off distance and the thickness of the shocked shell are roughly consistent with those predicted by such a bow-shock model. Also, the position of the exciting star(s), as estimated from the focus of the parabolic bow shock, closely matches that of the peak emission from the cometary H  ii region. However, the north–south velocity gradient in the ionized material remains difficult to explain in the context of the bow-shock model.  相似文献   
44.
45.
Measurements of particle size-fractionated POC/234Th ratios and 234Th and POC fluxes were conducted using surface-tethered, free-floating, sediment traps and large-volume in-situ pumps during four cruises in 2004 and 2005 to the oligotrophic eastern Mediterranean Sea and the seasonally productive western Mediterranean and northwest Atlantic. Analysis of POC/234Th ratios in sediment trap material and 10, 20, 53, 70, and 100 μm size-fractionated particles indicate, for most stations, decreasing ratios with depth, a weak dependence on particle size, and ratios that converge to ~1–5 μmol dpm?1 below the euphotic zone (~100–150 m) throughout the contrasting biogeochemical regimes. In the oligotrophic waters of the Aegean Sea, 234Th and POC fluxes estimated using sediment traps were consistently higher than respective fluxes estimated from water-column 234Th–238U disequilibrium, observations that are attributed to terrigenous particle scavenging of 234Th. In the more productive western Mediterranean and northwest Atlantic, 234Th and POC fluxes measured by sediment trap and 234Th–238U disequilibrium agreed within a factor of 2–4 throughout the water column. An implication of these results is that estimates of POC export by sediment traps and 234Th–238U disequilibrium can be biased differently because of differential settling speeds of POC and 234Th-carrying particles.  相似文献   
46.
In this paper, we examine the issues associated with docking autonomous underwater vehicles (AUVs) operating within an Autonomous Ocean Sampling Network (AOSN). We present a system based upon an acoustic ultrashort baseline system that allows the AUV to approach the dock from any direction. A passive latch on the AUV and a pole on the dock accomplish the task of mechanically docking the vehicle. We show that our technique for homing is extremely robust in the face of the two dominant sources of error-namely the presence of currents and the presence of magnetic anomalies. Our strategy for homing is independent of the initial bearing of the dock to the AUV, includes a method for detecting when the vehicle has missed the dock, and automatically ensures that the AUV is in a position to retry homing with a greater chance of success. Our approach is seen to be extremely successful in homing the vehicle to the dock, mechanically attaching itself to the dock, aligning inductive cores for data and power transfer, and undocking at the start of a fresh mission. Once the AUV is on the dock, we present a methodology that allows us to achieve the complex tasks with ensuring that the AUV is securely docked, periodically checking vehicle status, reacting to a vehicle that requires charging, tracking it when it is out on a mission, archiving and transmitting via satellite the data that the AUV collects during its missions, as well as providing a mechanism for researchers removed from the site to learn about vehicle status and command high-level missions. The dock is capable of long-term deployments at a remote site while respecting the constraints - low power, small size, low computational energy, low bandwidth, and little or no user input - imposed by the amalgamation of acoustic, electronic and mechanical components that comprise the entire system  相似文献   
47.
We present a polarimetric characterization and correction for the Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph (SOHO/LASCO) C2 and C3 white light coronagraphs. By measuring the uncorrected polarization angles in solar minimum C2 coronal images, we have determined that the coronagraph acts as an optical phase retarder which converts a small fraction of the incoming radiation polarization from linear to circular. In addition, from the measurements of polarization angle in C3 coronal images we have determined that a component of the instrumentally scattered light in that instrument is polarized. We infer the retardation angle for C2 and compute the corresponding Mueller matrix, and determine the polarized stray light spatial profile in C3. The C2 Mueller matrix and C3 polarized stray light profiles are used to correct for instrumental effects in solar minimum coronal observations to obtain polarized brightness between two and thirty-two solar radii, which show deep polar coronal holes extending to the limit of the field of view.  相似文献   
48.
Measurements of groundwater-dissolved inorganic nitrogen (nitrate?+?nitrite?+?ammonia) and phosphate concentrations were combined with recent, radium-based, submarine groundwater discharge (SGD) fluxes and prior estimates of SGD determined from Darcy’s Law, a hydrologic model, and total recharge to yield corresponding SGD nutrient fluxes to Ninigret, Point Judith, Quonochontaug, and Winnapaug ponds, located in southern Rhode Island. Results range from 80 to279 mmol N m?2 year?1 and 4 to 15 mmol P m?2 year?1 for Ninigret, 48 to 265 mmol N m?2 year?1 and 4 to 23 mmol P m?2 year?1 for Point Judith, 31 to 62 mmol N m?2 year?1 and 1 to 2 mmol P m?2 y?1 for Quonochontaug, and 668 to 1,586 mmol N m?2 year?1 and 29 to 70 mmol P m?2 year?1 for Winnapaug ponds, respectively. On a daily basis, the SGD supply of dissolved inorganic nitrogen and phosphorus is estimated to represent ~1–6 % of the total amount of these nutrients in surface waters of Ninigret, Point Judith, and Quonochontaug ponds and up to 84 and 17 % for Winnapaug, respectively, which may reflect a greater SGD nutrient supply to this pond because of the proximity of fertilized golf courses. With regard to the total external input of these essential nutrients, SGD represents 29–45 % of dissolved inorganic nitrogen input to Ninigret, Point Judith, and Quonochontaug ponds and as much as 93 % for Winnapaug pond. For phosphorus, the contribution from SGD represents 59–85 % of the total external input for Ninigret, Point Judith, and Quonochontaug ponds and essentially all of the phosphorus input to Winnapaug pond. Estimated rates of primary productivity potentially supported by the average supply of dissolved inorganic nitrogen from SGD range from 10 g C m?2 year?1 for Ninigret, 13 g C m?2 year?1 for Point Judith, 4 g C m?2 year?1 for Quonochontaug, and as high as 84 g C m?2 y?1 for Winnapaug pond. The imputed SGD-derived rates of primary productivity represent 4–9 % of water column primary production for Ninigret, Point Judith, and Quonochontaug ponds, and 74 % for Winnapaug pond, a result that is reasonably comparable to several other coastal environments where estimates of SGD nutrient supply have been reported. The implication is that SGD represents an ecologically significant source of dissolved nutrients to the coastal salt ponds of southern Rhode Island and, by inference, other coastal systems.  相似文献   
49.
The causes of land-use and land-cover change: moving beyond the myths   总被引:39,自引:0,他引:39  
Common understanding of the causes of land-use and land-cover change is dominated by simplifications which, in turn, underlie many environment-development policies. This article tracks some of the major myths on driving forces of land-cover change and proposes alternative pathways of change that are better supported by case study evidence. Cases reviewed support the conclusion that neither population nor poverty alone constitute the sole and major underlying causes of land-cover change worldwide. Rather, peoples’ responses to economic opportunities, as mediated by institutional factors, drive land-cover changes. Opportunities and constraints for new land uses are created by local as well as national markets and policies. Global forces become the main determinants of land-use change, as they amplify or attenuate local factors.  相似文献   
50.
Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 μg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号