首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   5篇
地质学   28篇
海洋学   6篇
天文学   31篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2014年   7篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1986年   1篇
  1977年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
51.
Methods for classifying land-cover types on the basis of image texture through processing of synthetic-aperture radar (SAR) imagery are described. A combination of statistical characteristics, as well as matrices of conversion probabilities for amplitudes of readings of SAR images, are used in the analysis of texture values. The results of the processing of SIR-C SAR images recorded from aboard the Shuttle spacecraft using these methods are presented for the purpose of classification of forest types.  相似文献   
52.
Traditional methods of time series analysis of satellite ionospheric measurements have some limitations and disadvantages that are mainly associated with the complex nonstationary signal structure. In this paper, the possibility of identifying and studying the temporal characteristics of signals via visual analysis is considered. The proposed approach is illustrated by the example of the visual analysis of wave measurements on the DEMETER microsatellite during its passage over the HAARP facility.  相似文献   
53.
Fragments of aluminous enstatite from lunar meteorites of highland origin were investigated. It was found that such fragments usually occur in impact breccias of troctolitic composition. The aluminous enstatite contains up to 12 wt % Al2O3 and shows low CaO (<1 wt %) and almost constant high Mg/(Mg + Fe) ratio (89.5 ± 1.4 at %) identical to that of the Earth’s mantle. With respect to these parameters, the aluminous enstatites are distinctly different from common orthopyroxene of lunar rocks. The aluminous enstatite associates with spinel (pleonaste), olivine, anorthite (clinopyroxene was never found), and accessory minerals: rutile, Ti-Zr oxides, troilite, and Fe-Ni metal. The same assemblage was described in rare fragments of spinel cataclasites from the samples of the Apollo missions. Thermobarometry and the analysis of phase equilibria showed that the rocks hosting aluminous enstatite are of deep origin and occurred at depths from 25 km to 130–200 km at T from 800 to 1300°C, i.e., at least in the lower crust and, possibly, in the upper mantle of the Moon. These rocks could form individual plutons or dominate the composition of the lower crust. The most probable source of aluminous enstatite is troctolitic magnesian rocks and, especially, spinel troctolites with low Ca/Al and Ca/Si ratios. The decompression of such rocks must produce cordierite-bearing assemblages. The almost complete absence of such assemblages in the surficial rocks of lunar highlands implies that vertical tectonic movements were practically absent in the lunar crust. The transport of deep-seated materials to the lunar surface was probably related to impact events during the intense meteorite bombardments >3.9 Ga ago.  相似文献   
54.
Dhofar 1442 is one of the few lunar KREEP-rich meteorites, which contains KREEP norites and KREEP gabbronorite as well as low-Ti basalts and highly evolved granophyres. Zircon is a typical accessory mineral of KREEP rocks. U-Th-Pb dates of 12 zircon grains (four of them were in two lithic clasts, and the others were fragments in the meteorite matrix) indicate that the zircons belong to at least two groups of different age: “ancient” (~4.31 Ga) and “young” (~3.95 Ga), which correspond to two major pulses of KREEP magmatism in the source region of the Dhofar 1442 meteorite. The zircon of the “young” group was most probably related to the crater ejecta of the Mare Imbrium Basin. The rock fragments dated at approximately 3.95 Ga have the composition of KREEP gabbronorite. The parental rocks of the zircon of the “ancient” group in the Dhofar 1442 meteorite are uncertain and could be highly evolved granophyres. This hypothesis is supported by the high Th (100–300 ppm) and U (150–400 ppm) contents. These zircon fragments of the “ancient” group, higher than in the “young” group (<50 ppm Th and <70 ppm U) and are typical of zircon from lunar granitic rocks. The composition of the products of KREEP magmatism in the source region of the Dhofar 1442 meteorite could vary from predominantly granitic to KREEP gabbronoritic at 4.3–3.9 Ga.  相似文献   
55.
Magnetic properties of the Chelyabinsk meteorite: Preliminary results   总被引:1,自引:0,他引:1  
This paper presents the distribution of magnetic susceptibility, χ0, in fragments of the Chelyabinsk ordinary chondrite (LL5, S4, W0, fall of February 15, 2013) from the collection of the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, and results obtained by standard magnetic techniques for the meteorite material, including thermomagnetic analysis, measurements of natural remanent magnetization (NRM) and saturation isothermal remanent magnetization (SIRM), as well as the spectra of their alternating field demagnetization at amplitudes up to 170 mT, measurements of hysteresis loops and back-field remanence demagnetization curves at temperatures from 10 K to 700°C etc. The mean logχ0 values for the light-colored (main) lithology of the meteorite material and impact-melt breccia from our collection are 4.54 ± 0.10 (n = 66) and 4.65 ± 0.09 (n = 38) (×10?9 m3/kg), respectively. According to international magnetic classification of meteorites, Chelyabinsk falls within the range of LL5 chondrites. The mean metal content was estimated from the saturation magnetization, M s, of the light- and dark-colored lithologies as 3.7 and 4.1 wt %, respectively. Hence, the dark lithology is richer in metal. The metal grains are multidomain at room temperature and show low coercive force, B c (<2 mT) and remanent coercive force, B cr (15–23 mT). The thermomagnetic analyses of the samples showed that the magnetic properties of the Chelyabinsk meteorite are controlled mainly by taenite and kamacite at temperatures >75 K. In the temperature range below 75 K, magnetic properties are controlled by chromite; the magnetic hardness of the samples is maximal at 10 K and equals to 606 and 157 mT for the light- and dark-colored lithologies, respectively.  相似文献   
56.
Abstract— Eighteen new lithic fragments from the Soviet Luna missions have been analyzed with electron microprobe and 40Ar‐39Ar methods. Luna 16 basalt fragments have aluminous compositions consistent with previous analyses, but have two distinct sets of well‐constrained ages (3347 ± 24 Ma, 3421 ± 30 Ma). These data, combined with other Luna 16 basalt ages, imply that there were multiple volcanic events filling Mare Fecunditatis. The returned basalt fragments have relatively old cosmicray exposure (CRE) ages and may have been recovered from the ejecta blanket of a young (1 Ga), nearby crater. A suite of highlands rocks (troctolites and gabbros) is represented in the new Luna 20 fragments. One fragment is the most compositionally primitive (Mg# = 91–92) spinel troctolite yet found. Both troctolites have apparent crystallization ages of 4.19 Ga; other rocks in the suite have progressively younger ages and lower Mg#s. The age and composition progression suggests that these rocks may have crystallized from a single source magma, or from similar sources mobilized at the same time. Within the new Luna 24 basalt fragments is a quench‐textured olivine vitrophyre with the most primitive composition yet analyzed for a Luna 24 basalt, and several much more evolved olivine‐bearing basalts. Both new and previously studied Luna 24 very low‐Ti (VLT) basalt fragments have a unimodal age distribution (3273 ± 83 Ma), indicating that most returned samples come from a single extrusive episode within Mare Crisium much later than the Apollo 17 VLT basalts (3.6–3.7 Ga).  相似文献   
57.
The Flux of Lunar Meteorites onto the Earth   总被引:1,自引:0,他引:1  
Numerous new finds of lunar meteorites in Oman allow detailed constraints to be obtained on the intensity of the transfer of lunar matter to the Earth. Our estimates show that the annual flux of lunar meteorites in the mass interval from 10 to 1000 g to the entire Earth's surface should not be less than several tenths of a kilogram and is more likely equal to tens or even a few hundred kilograms, i.e., a few percent of the total meteorite flux. This corresponds to several hundred or few thousand falls of lunar meteorites on all of Earth per year. Even small impact events, which produce smaller than craters on the Moon smaller than 10 km in diameter, are capable of transferring lunar matter to the Earth. In this case, the Earth may capture between 10 to 100% of the mass of high-velocity crater ejecta leaving the Moon. Our estimates for the lunar flux imply rather optimistic prospects for the discovery of new lunar meteorites and, consequently, for the analyses of the lunar crust composition. However, the meteorite-driven flux of lunar matter did not play any significant role in the formation of the material composition of the Earth's crust, even during the stage of intense meteorite bombardment.  相似文献   
58.
59.
The Dhofar 280 lunar highland meteorite is the first one in which native silicon was identified in association with iron silicides. This association is surrounded by silicate material enriched in Si, Na, K, and S and occurs within an impact-melt matrix. Compared to the meteorite matrix, the objects with native Si and the silicate material around them show high Al-normalized concentrations of volatile elements and/or elements with low sensitivity to oxygen but are not any significantly enriched in refractory lithophile elements. Some lithophile elements (V, U, Sm, Eu, and Yb) seem to be contained in reduced forms, and this predetermines REE proportions atypical of lunar rocks and a very low Th/U ratio. The admixture of siderophile elements (Ni, Co, Ge, and Sb) suggests that the Si-bearing objects were contaminated with meteorite material and were produced by the impact reworking of lunar rocks. The high concentrations of volatile elements suggest that the genesis of these objects could be related to the condensation of silicate vapor generated during meteorite impacts. The reduction of silicon and other elements could take place in an impact vapor cloud, with the subsequent condensation of these elements together with volatile components. On the other hand, condensates of silicate vapor could be reduced by impact reworking of impact breccias. Impact-induced vaporization and condensation seem not to play any significant role in forming the composition of the lunar crust, but the contents of the products of such processes can be locally relatively high. The greatest amounts of silicate vapor were generated during significant impact events. For example, more than 70% of the total mass of lunar material evaporated in the course of impact events should have resulted from the collision of the Moon with a cosmic body that produced the Moon??s largest South Pole-Aitken basin.  相似文献   
60.
Phosphorus-bearing Fe and Ni sulfides represent a new type of phosphorus compounds and are characteristic accessory phases of CM chondrites. The proportions of atoms in the sulfides can be approximated by the equation (Fe + Ni)/P = 0.965 ± 0.003 (1σ) · S/P + 1.255 ± 0.036 (1σ). Sulfides with high S/P ratios are systematically richer in Fe and poorer in Ni compared with low-S/P sulfides. Their characteristic minor elements are Cr, Ca, Co, K, and Na. The contents of Cr and Ca may reach several weight percent, but their incorporation does not affect the relation between (Fe + Ni)/P and S/P. This is also true of light elements (O and H), which probably occur in the P-bearing sulfides in certain amounts. The sulfides are usually associated with schreibersite, barringerite, eskolaite, and daubreelite. A negative correlation was observed between the Fe/Ni ratios of coexisting P-bearing sulfides and phosphides. Metallic iron was never found in association with the sulfides. It can be suggested that P-bearing sulfide is a primary phase rather than a secondary alteration product formed under the conditions of the CM chondrite parent body. This phase had to be stable in the solar nebula after the formation of Ca-Al inclusions and before the condensation of Fe-Ni metal. At high temperatures, P-bearing sulfide with low Fe/Ni and S/P ratios coexists with schreibersite in the solar gas. During condensation schreibersite is replaced by barringerite, which is accompanied by a decrease in the Fe/Ni ratio of phosphides and an increase in the S/P and Fe/Ni ratios of P-bearing sulfides. Trace element data suggest that the P-bearing sulfides could be formed in the solar nebula by the sulfidization of a precursor phase of extrasolar origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号