首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4135篇
  免费   180篇
  国内免费   26篇
测绘学   136篇
大气科学   229篇
地球物理   1035篇
地质学   1489篇
海洋学   379篇
天文学   793篇
综合类   17篇
自然地理   263篇
  2023年   20篇
  2022年   26篇
  2021年   69篇
  2020年   85篇
  2019年   81篇
  2018年   143篇
  2017年   145篇
  2016年   198篇
  2015年   161篇
  2014年   195篇
  2013年   244篇
  2012年   176篇
  2011年   249篇
  2010年   172篇
  2009年   277篇
  2008年   236篇
  2007年   155篇
  2006年   186篇
  2005年   161篇
  2004年   143篇
  2003年   117篇
  2002年   107篇
  2001年   90篇
  2000年   76篇
  1999年   72篇
  1998年   75篇
  1997年   64篇
  1996年   40篇
  1995年   28篇
  1994年   39篇
  1993年   23篇
  1992年   31篇
  1991年   23篇
  1990年   24篇
  1989年   20篇
  1988年   28篇
  1987年   31篇
  1986年   14篇
  1985年   31篇
  1984年   25篇
  1983年   42篇
  1982年   18篇
  1981年   21篇
  1980年   18篇
  1979年   21篇
  1978年   19篇
  1977年   12篇
  1975年   15篇
  1973年   10篇
  1972年   9篇
排序方式: 共有4341条查询结果,搜索用时 109 毫秒
991.
The main objective of this research was to analyse the effect of soil management on soil sealing and on soil water content under contrasting tillage practices and its influence on corn yield. The experimental research was carried out in a field cultivated with irrigated corn differentiated into three zones representing a gradient of soil texture (Z1, Z2, and Z3, i.e., increasingly coarser). Two plots under different soil management practices (conventional intensive tillage, CT, and no‐tillage, NT) were selected in each zone. The susceptibility to sealing of each soil and the steady infiltration rates were evaluated in the laboratory subjecting the soils to rainfall simulation applied at an intensity of 25 mm h?1. In addition, soil porosity under each treatment was quantified. Soil water content (0–90 cm depth) was determined gravimetrically at the beginning and the end of the growing cycle and at the surface (0–5 cm) during three growing seasons and continuously at two depths (5–15 and 50–60 cm) during the last growing cycle. Soil water content was simulated using the SIMPEL model, which was calibrated for the experimental conditions. Corn yield and above‐ground biomass were also analysed. Significant differences in soil sealing among zones, with decreasing soil sealing for coarser textures, and treatments were observed with infiltration rates that were near twice in NT than in CT, being the effect of soil cover significant in the reduction of soil detachment and soil losses. NT showed higher soil water content than CT, especially in the surface layers. Above‐ground biomass production was smaller in CT than in NT, and in the areas with higher sealing susceptibility was 30% to 45% smaller than in other zones, reaching the smallest values in Z1. A similar reduction in corn yield was observed between treatments being smaller in CT than in NT. No‐tillage has been confirmed as an effective technique that benefits soil physical properties as well as crop yields in relation to CT, being its impact greater in soils susceptible to sealing.  相似文献   
992.
The study of the environmental factors that control evapotranspiration and the components of evapotranspiration leads to a better understanding of the actual evapotranspiration (ET) process that links the functioning of the soil, water and atmosphere. It also improves local, regional and global ET modelling. Globally, few studies so far focussed on the controls and components of ET in alpine grasslands, especially in mountainous sites such as the tussock grasslands located in the páramo biome (above 3300 m a.s.l.). The páramo occupies 35 000 km2 and provides water resources for many cities in the Andes. In this article, we unveiled the controls on ET and provided the first insights on the contribution of transpiration to ET. We found that the wet páramo is an energy-limited region and net radiation (Rn) is primarily controlling ET. ET was on average 1.7 mm/day. The monthly average evaporative fraction (ET/Rn) was 0.47 and it remained similar for wet and dry periods. The secondary controls on ET were wind speed, aerodynamic resistance and surface resistance that appeared more important for dry periods, where significantly higher ET rates were found (20% increase). During dry events, transpiration was on average 1.5 mm/day (range 0.7–2.7 mm/day), similar to other tussock grasslands in New Zealand (range 0.6–3.3 mm/day). Evidence showed interception contributes more to ET than transpiration. This study sets a precedent towards a better understanding of the evapotranspiration process and will ultimately lead to a better land-atmosphere fluxes modelling in the tropics.  相似文献   
993.
994.
The macrotidal Colorado River Delta at the northern end of the Gulf of California in Mexico is hydrologically complex. We review historical accounts, data, field notes and photographs to evaluate the hydrological processes active on the delta prior to the advent of upstream dams. We also employ satellite imagery as well as recent LIDAR data to illustrate the critical role played by headcut erosion in restoring the river's fluvial/tidewater connection during the 1979–1988 floods. Prior to human manipulation, the river's contribution of fresh water to the Gulf was periodically interrupted by natural overflowing, avulsing, and flooding into the sub-sea level Salton Sink on the north slope of the delta plain. River flow south towards the Gulf was also subject to occasional overflow into Laguna Salada, another sub-sea level basin. In the mid-20th century, the Delta was disconnected from its fluvial supply following installation of upstream dams and reservoirs. A tidal sediment obstruction developed in the estuary channel, forming a final barrier to fluvial connectivity. Release of Colorado River floodwaters into Mexico between 1979 and 1988 provided a natural experiment on the hydrological response of a long-disconnected macrotidal delta to restoration of fluvial supply.  相似文献   
995.
Eclogite and blueschist facies rocks occurring as a tectonic unit between the underlying Menderes Massif (MM) and the overlying Afyon Zone/Lycian Nappes and the Bornova Flysch Zone in western Anatolia represent the eastward continuation of the Cycladic Blueschist Unit (CBU) in Turkey. This high-P unit is attributed to the closure of the Pindos Ocean and consists of (a) a Triassic to Upper Cretaceous coherent series derived from passive continental margin sediments and (b) the tectonically overlying Upper Cretaceous Selçuk mélange with eclogite blocks embedded in a pelitic epidote-blueschist matrix. The coherent series has experienced epidote-blueschist facies metamorphism (490 ± 25°C/11.5 ± 1.5 kbar; 38 km depth). 40Ar/39Ar white mica and 206Pb/238U monazite dating of quartz metaconglomerate from coherent series yielded middle Eocene ages of 44 ± 0.3 and 40.1 ± 3.1 Ma for epidote-blueschist facies metamorphism, respectively. The epidote-blueschist facies metamorphism of the matrix of the Selçuk mélange culminates at 520 ± 15°C/13 ± 1.5 kbar, 43 km depth, and is dated at 57.5 ± 0.3–54.5 ± 0.1 Ma (40Ar/39Ar phengite). Eclogite facies metamorphism of the blocks (570 ± 30°C/18 ± 2 kbar, 60 km depth) is early Eocene and dated at 56.2 ± 1.5 Ma by 206Pb/238U zircon. Eclogites experienced a nearly isothermal retrogression (490 ± 40°C/~6 to 7 kbar) during their incorporation into the Selçuk mélange. The retrograde overprints of the coherent series (410 ± 15°C/7 ± 1.5 kbar from Dilek Peninsula and 485 ± 33°C/~6 to 7 kbar from Selçuk–Tire area) and the Selçuk mélange (510 ± 15°C/6 ± 1 kbar) are dated at 35.8 ± 0.5–34.3 ± 0.1 Ma by 40Ar/39Ar white mica and 31.6 ± 6.6 Ma by 206Pb/238U allanite dating methods, respectively. Regional geological constrains reveal that the contact between the MM and the CBU originally formed a lithosphere-scale transform fault zone. 40Ar/39Ar white mica age from the contact indicates that the CBU and the MM were tectonically juxtaposed under greenschist facies conditions during late Eocene, 35.1 ± 0.3 Ma.  相似文献   
996.
997.
Coastal areas in East Africa are experiencing rapid economic, resource management, demographic and technological shifts. In response diverse Community-based Natural Resource Management (CBNRM) applications have been embraced to provide mutual conservation and use benefits. These initiatives have met with mixed success in practice. Reflecting on the limitations of past research using common pool resources theory theory to study CBNRM we use insights from actor oriented theory combined with satellite image analysis to describe and discuss the forces dynamically influencing institutional and mangrove forest cover change at Kisakasaka, Zanzibar focussing on the formal CBNRM project period between 1996 and 2001, but also considering the period before and after this. We examine the shifting social relations that affected the performance and viability of the formal CBNRM arrangements. An integrated approach was taken to the presentation and discussion of results where it was possible to enrich and expand explanations of socio-environmental change, which was driven by a lack of government support, the undermining effects of party political divisions, and the lack of institutional adaptive capacity. We conclude that this was a useful approach to explain CBNRM intervention events at Kisakasaka.  相似文献   
998.
Leaf area index (LAI) and canopy coverage are important parameters when modelling snow process in coniferous forests, controlling interception and transmitting radiation. Estimates of LAI and sky view factor show large variability depending on the estimation method used, and it is not clear how this is reflected in the calculated snow processes beneath the canopy. In this study, the winter LAI and sky view fraction were estimated using different optical and biomass‐based approximations in several boreal coniferous forest stands in Fennoscandia with different stand density, age and site latitude. The biomass‐based estimate of LAI derived from forest inventory data was close to the values derived from the optical measurements at most sites, suggesting that forest inventory data can be used as input to snow hydrological modelling. Heterogeneity of tree species and site fertility, as well as edge effects between different forest compartments, caused differences in the LAI estimates at some sites. A snow energy and mass balance model (SNOWPACK) was applied to detect how the differences in the estimated values of the winter LAI and sky view fraction were reflected in simulated snow processes. In the simulations, an increase in LAI and a decrease in sky view fraction changed the snow surface energy balance by decreasing shortwave radiation input and increasing longwave radiation input. Changes in LAI and sky view fraction affected directly snow accumulation through altered throughfall fraction and indirectly snowmelt through the changed surface energy balance. Changes in LAI and sky view fraction had a greater impact on mean incoming radiation beneath the canopy than on other energy fluxes. Snowmelt was affected more than snow accumulation. The effect of canopy parameters on evaporation loss from intercepted snow was comparable with the effect of variation in governing meteorological variables such as precipitation intensity and air temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
999.
A computational fluid dynamics (CFD)‐based methodology is proposed to derive convective mass‐transfer coefficients (wind functions) that are required for estimating evaporation of water bodies with the mass‐transfer method. Three‐dimensional CFD was applied to model heat transfer in two water bodies: a Class‐A tank evaporimeter and an on‐farm artificial pond. The standard k–? model assuming isotropic turbulence was adopted to describe turbulent heat transport, whereas the heat and mass transfer analogy was assumed to derive the wind functions. The CFD‐derived wind functions were very similar to those empirically derived from the experimental water bodies. The evaporation rates calculated with the synthetic wind functions were in good agreement with hourly and daily evaporation measurements for the tank and pond, respectively. The proposed CFD‐approach is generalisable and cost effective, because it has low input data requirements. Besides, it provides additional capability of modelling the spatial distribution of the evaporation rate over the water surface. Although the application of CFD to water bodies evaporation modelling is still in development, it looks very promising. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
1000.
Groundwater resources play a pivotal role in the rural water delivery system in Ghana. The hydrogeological system of Middle Voltaian terrain was simulated using available data on hydraulic heads and boundary conditions. The objective was to characterize the general groundwater flow pattern and provide local estimates of the distribution of hydraulic conductivity and recharge fields. The results suggest a predominant NE–SW flow direction, which ties in with the general regional structural trend and indicates that the hydrogeological conditions of the rocks are controlled by structural entities created in the wake of fracturing and/or weathering of the rocks whose primary permeabilities are considerably reduced because of high compaction and low‐grade metamorphism. Calibrated hydraulic conductivities range between 1.90 and 10.81 m/d. The spatial distribution appears to reflect the intensity of fracturing and/or weathering of the rock and the proportion of the clay fraction of the weathered zone. Vertical groundwater recharge has been estimated to range between 0.3% and 4.1% of the annual rainfall. This recharge rate is quite low and reflects the imperviousness of the thick overburden because of high clay content in some places and high compaction in others. Despite this apparently low recharge rate, groundwater resources potential in the area appear to be high, and increased abstraction from existing abstraction wells by up to 50% does not appear to register significant effects on groundwater budgets at the simulated recharge rates. This suggests that the well yields are much lower than the potential of the aquifer system. The apparently low yields might be associated with poor well development and the choice of inappropriate well completion materials. This study recommends a monitoring system to be developed for a much more regional groundwater flow simulation under transient conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号