首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   12篇
地质学   8篇
海洋学   2篇
天文学   1篇
自然地理   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2002年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.
Spatially distributed hydrological models require information on the land cover pattern, as it directly influences the generation of run‐off. However, it is not clear which detail of land cover information is suitable for simulating the catchment hydrology. A better understanding of the relationship between the land cover detail and the hydrological processes is therefore required as it would enhance a successful application of the hydrological model. This study investigates the relevance of accurate information about the crop types in the catchment for the simulation of run‐off, baseflow and evapotranspiration. Results reveal that adding knowledge about the crop type in the model simulation is redundant when area‐averaged water flux predictions are intended. On the contrary, when a spatial distribution of water flux predictions is desired, it is meaningful to increase the land cover detail because an increased heterogeneity in the land cover map induces an increased heterogeneity in the hydrological response and locally reduces the uncertainty in the model prediction up to 50%. To assess the land cover uncertainty and to locate the regions for which the reduction in prediction uncertainty is the highest, the thematic uncertainty map (constructed through fuzzy logic) is shown to be a useful tool. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
22.
We measured specific activities of the long‐lived cosmogenic radionuclides 60Fe in 28 iron meteorites and 53Mn in 41 iron meteorites. Accelerator mass spectrometry was applied at the 14 MV Heavy Ion Accelerator Facility at ANU Canberra for all samples except for two which were measured at the Maier‐Leibnitz Laboratory, Munich. For the large iron meteorite Twannberg (IIG), we measured six samples for 53Mn. This work doubles the number of existing individual 60Fe data and quadruples the number of iron meteorites studied for 60Fe. We also significantly extended the entire 53Mn database for iron meteorites. The 53Mn data for the iron meteorite Twannberg vary by more than a factor of 30, indicating a significant shielding dependency. In addition, we performed new model calculations for the production of 60Fe and 53Mn in iron meteorites. While the new model is based on the same particle spectra as the earlier model, we no longer use experimental cross sections but instead use cross sections that were calculated using the latest version of the nuclear model code INCL. The new model predictions differ substantially from results obtained with the previous model. Predictions for the 60Fe activity concentrations are about a factor of 2 higher, for 53Mn, they are ~30% lower, compared to the earlier model, which gives now a better agreement with the experimental data.  相似文献   
23.
Natural Hazards - In this study we estimate how flooded areas evolve on measures of social vulnerability over both the long and short term in Calgary, Canada. The first part of our analysis...  相似文献   
24.
25.
In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical back‐scatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model‐based discharge predictions through assimilation of these remotely sensed soil moisture values. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
26.
Substantial isotopic fractionations are associated with many microbial sulfur metabolisms and measurements of the bulk δ34S isotopic composition of sulfur species (predominantly sulfates and/or sulfides) have been a key component in developing our understanding of both modern and ancient biogeochemical cycling. However, the interpretations of bulk δ34S measurements are often non-unique, making reconstructions of paleoenvironmental conditions or microbial ecology challenging. In particular, the link between the μm-scale microbial activity that generates isotopic signatures and their eventual preservation as a bulk rock value in the geologic record has remained elusive, in large part because of the difficulty of extracting sufficient material at small scales. Here we investigate the potential for small-scale (∼100 μm-1 cm) δ34S variability to provide additional constraints for environmental and/or ecological reconstructions. We have investigated the impact of sulfate concentrations (0.2, 1, and 80 mM SO4) on the δ34S composition of hydrogen sulfide produced over the diurnal (day/night) cycle in cyanobacterial mats from Guerrero Negro, Baja California Sur, Mexico. Sulfide was captured as silver sulfide on the surface of a 2.5 cm metallic silver disk partially submerged beneath the mat surface. Subsequent analyses were conducted on a Cameca 7f-GEO secondary ion mass spectrometer (SIMS) to record spatial δ34S variability within the mats under different environmental conditions. Isotope measurements were made in a 2-dimensional grid for each incubation, documenting both lateral and vertical isotopic variation within the mats. Typical grids consisted of ∼400-800 individual measurements covering a lateral distance of ∼1 mm and a vertical depth of ∼5-15 mm. There is a large isotopic enrichment (∼10-20‰) in the uppermost mm of sulfide in those mats where [SO4] was non-limiting (field and lab incubations at 80 mM). This is attributed to rapid recycling of sulfur (elevated sulfate reduction rates and extensive sulfide oxidation) at and above the chemocline. This isotopic gradient is observed in both day and night enrichments and suggests that, despite the close physical association between cyanobacteria and select sulfate-reducing bacteria, photosynthetic forcing has no substantive impact on δ34S in these cyanobacterial mats. Perhaps equally surprising, large, spatially-coherent δ34S oscillations (∼20-30‰ over 1 mm) occurred at depths up to ∼1.5 cm below the mat surface. These gradients must arise in situ from differential microbial metabolic activity and fractionation during sulfide production at depth. Sulfate concentrations were the dominant control on the spatial variability of sulfide δ34S. Decreased sulfate concentrations diminished both vertical and lateral δ34S variability, suggesting that small-scale variations of δ34S can be diagnostic for reconstructing past sulfate concentrations, even when original sulfate δ34S is unknown.  相似文献   
27.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号