首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   21篇
地质学   11篇
天文学   80篇
综合类   1篇
自然地理   4篇
  2022年   1篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   10篇
  2010年   9篇
  2009年   12篇
  2008年   6篇
  2007年   7篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   13篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1994年   2篇
  1991年   1篇
排序方式: 共有120条查询结果,搜索用时 765 毫秒
51.
We calculate the X-ray emission from the shocked fast wind blown by the central stars of planetary nebulae (PNe) and compare with observations. Using spherically symmetric self-similar solutions, we calculate the flow structure and X-ray temperature for a fast wind slamming into a previously ejected slow wind. We find that the observed X-ray emission of six PNe can be accounted for by shocked wind segments that were expelled during the early-PN phase, if the fast wind speed is moderate,   v 2∼ 400–600 km s−1  , and the mass-loss rate is a few times  10−7 M yr−1  . We find, as proposed previously, that the morphology of the X-ray emission is in the form of a narrow ring inner to the optical bright part of the nebula. The bipolar X-ray morphology of several observed PNe, which indicates an important role of jets, rather than a spherical fast wind, cannot be explained by the flow studied here.  相似文献   
52.
53.
We argue that all transient searches for planets in globular clusters have a very low detection probability. Planets of low-metallicity stars typically do not reside at small orbital separations. The dependence of planetary system properties on metallicity is clearly seen when the quantity   I e ≡ M p[ a (1 − e )]2  is considered;   M p, a   and e are the planet mass, semimajor axis and eccentricity, respectively. In high-metallicity systems, there is a concentration of systems at high and low values of I e , with a low-populated gap near   I e ∼ 0.3 M J au2  , where M J is Jupiter's mass. In low-metallicity systems, the concentration is only at the higher range of I e , with a tail to low values of I e . Therefore, it is still possible that planets exist around main-sequence stars in globular clusters, although at small numbers because of the low metallicity, and at orbital periods of ≳10 d. We discuss the implications of our conclusions on the role that companions can play in the evolution of their parent stars in globular clusters, for example, influencing the distribution of horizontal branch stars on the Hertzsprung–Russell diagram of some globular clusters, and in forming low-mass white dwarfs.  相似文献   
54.
A new method for classification of galaxy spectra is presented, based on a recently introduced information theoretical principle, the information bottleneck . For any desired number of classes, galaxies are classified such that the information content about the spectra is maximally preserved. The result is classes of galaxies with similar spectra, where the similarity is determined via a measure of information. We apply our method to ∼6000 galaxy spectra from the ongoing 2dF redshift survey, and a mock-2dF catalogue produced by a cold dark matter (CDM) based semi-analytic model of galaxy formation. We find a good match between the mean spectra of the classes found in the data and in the models. For the mock catalogue, we find that the classes produced by our algorithm form an intuitively sensible sequence in terms of physical properties such as colour, star formation activity, morphology, and internal velocity dispersion. We also show the correlation of the classes with the projections resulting from a principal component analysis.  相似文献   
55.
Electrical conductivity (EC) logs were obtained by both open‐borehole logging and passive multilevel sampling (MLS) in an observation borehole penetrating the Coastal Aquifer in Tel Aviv, Israel. Homogeneous vertical velocities for a 70‐m thick subaquifer were approximated from each profile using a steady‐state advection‐diffusion model. The open‐borehole log led to an overestimation of the steady‐state upward advective flux of deep brines (vertical velocity of 0.95 cm/yr as compared to 0.07 cm/yr for the MLS profile). The combination of depth‐dependent data and the suggested simple modeling approach comprises a method for assessing the vertical location of salinity sources and the nature of salt transport from them (i.e., advective vs. diffusive). However, in this case, the easily obtained open‐borehole logs should not be used for collecting depth‐dependent data.  相似文献   
56.
Using recent results on the operation of turbulent dynamos, we show that a turbulent dynamo may amplify a large-scale magnetic field in the envelopes of asymptotic giant branch (AGB) stars. We propose that a slow rotation of the AGB envelope can fix the symmetry axis, leading to the formation of an axisymmetric magnetic field structure. Unlike solar-type αω dynamos, the rotation has only a small role in amplifying the toroidal component of the magnetic field; instead of an αω dynamo we propose an α 2 ω . The magnetic field may reach a value of     , where B e is the equipartition (between the turbulent and magnetic energy densities) magnetic field. The large-scale magnetic field is strong enough for the formation of magnetic cool spots on the AGB stellar surface. The spots may regulate dust formation, and hence the mass-loss rate, leading to axisymmetric mass loss and the formation of elliptical planetary nebulae (PNe). Despite its role in forming cool spots, the large-scale magnetic field is too weak to play a dynamic role and directly influence the wind from the AGB star, as required by some models. We discuss other possible problems in models where the magnetic field plays a dynamic role in shaping the AGB winds, and argue that they cannot explain the formation of non-spherical PNe.  相似文献   
57.
Line-source multi-tracer test for assessing high groundwater velocity   总被引:1,自引:0,他引:1  
Segmented line-source multi-tracer injection is suggested as an effective method for assessing groundwater velocities and flow directions in subsurfaces characterized by high water flux. Modifying the common techniques of injecting a tracer into a well became necessary after point-source natural and forced gradient tracer tests ended with no reliable information on the local groundwater flow. The tracer's line-source increases the likelihood of success of the test and could provide additional information regarding the lateral heterogeneity of the aquifer. In a field experiment conducted in the northwestern part on the Dead Sea coast, tracers were injected into an 8-m-long line injection system perpendicular to the assumed flow direction. The injection system was divided into four separate segments with four different tracers. An array of five boreholes located within a 10 × 10 m area downstream was used for monitoring the tracers' transport. Two dye tracers (uranine and Na naphthionate) were injected in a long pulse of several hours into two of the injection pipe segments. Two other tracers (Rhenium oxide and Gd-DTPA) were instantaneously injected into the other two segments. The tracers were detected 0.7 to 2.3 h after injection in four of the five observation wells, located 2.3 to 10 m away from the injection system. The groundwater velocity was determined to be ~80 to 170 m/d, based on the recoveries of the tracers. The groundwater flow direction was derived based on the arrival of the tracers and was found to be quite consistent with the apparent direction of the hydraulic gradient.  相似文献   
58.
A review of colloid transport in fractured rocks   总被引:3,自引:0,他引:3  
Recent recognition of colloid and colloidassociated transport of strongly sorbing contaminants in fractured rocks highlights the importance of exploring the transport behavior of colloids under conditions prevailing in the field.The rapid transport of colloids through fractured rocks-as affected by the hydraulic properties of the flow system,the properties of fracture surface and the geochemical conditionshas not been sufficiently elucidated,and predictions of colloid transport through fractures have encountered difficulties,particularly at the field scale.This article reviews the current understanding of the mechanisms and modeling of colloid transport and retention in fractured rocks.Commonly used experimental techniques and approaches for conducting colloid transport experiments at different scales,ranging from the laboratory to the field scale,are summarized and commented upon.The importance of various interactions(e.g.,dissolution,colloid deposition,generation,mobilization and deposition of filling materials within fractures) between the flowing solution and the fracture walls(in many cases,with skin or coating on the host rock at the liquid-solid interface) has been stressed.Colloid transport through fractures of high heterogeneity has not yet been well understood and modeled at the field scale.Here,we summarize the current knowledge and understanding accumulated in the last two decades in regard to colloid and colloidassociated transport through fractures.Future research needs are also discussed.  相似文献   
59.
Noam Soker   《New Astronomy》2008,13(7):491-497
I suggest the existence of an extended zone above the surface of asymptotic giant branch (AGB), as well as similar stars experiencing high mass-loss rates. In addition to the escaping wind, in this zone there are parcels of gas that do not reach the escape velocity. These parcels of dense gas rise slowly and then fall back. The wind and bound gas exist simultaneously to distances of 100AU. I term this region the effervescent zone. In this phenomenological study I find that the density of the bound material in the effervescent zone falls as r−5/2, not much faster than the wind density. The main motivation to propose the effervescent model is to allow wide binary companions to influence the morphology of the descendant planetary nebulae (PN) by accreting mass from the effervescent zone. Accretion from the effervescent zone is more efficient than accretion from the wind in forming an accretion disk around the companion. The companion might then blow two jets that will shape the descendant PN.  相似文献   
60.
MESSENGER’s Mercury Dual Imaging System (MDIS) obtained multispectral images for more than 80% of the surface of Mercury during its first two flybys. Those images have confirmed that the surface of Mercury exhibits subtle color variations, some of which can be attributed to compositional differences. In many areas, impact craters are associated with material that is spectrally distinct from the surrounding surface. These deposits can be located on the crater floor, rim, wall, or central peak or in the ejecta deposit, and represent material that originally resided at depth and was subsequently excavated during the cratering process. The resulting craters make it possible to investigate the stratigraphy of Mercury’s upper crust. Studies of laboratory, terrestrial, and lunar craters provide a means to bound the depth of origin of spectrally distinct ejecta and central peak structures. Excavated red material (RM), with comparatively steep (red) spectral slope, and low-reflectance material (LRM) stand out prominently from the surrounding terrain in enhanced-color images because they are spectral end-members in Mercury’s compositional continuum. Newly imaged examples of RM were found to be spectrally similar to the relatively red, high-reflectance plains (HRP), suggesting that they may represent deposits of HRP-like material that were subsequently covered by a thin layer (∼1 km thick) of intermediate plains. In one area, craters with diameters ranging from 30 km to 130 km have excavated and incorporated RM into their rims, suggesting that the underlying RM layer may be several kilometers thick. LRM deposits are useful as stratigraphic markers, due to their unique spectral properties. Some RM and LRM were excavated by pre-Tolstojan basins, indicating a relatively old age (>4.0 Ga) for the original emplacement of these deposits. Detailed examination of several small areas on Mercury reveals the complex nature of the local stratigraphy, including the possible presence of buried volcanic plains, and supports sequential buildup of most of the upper ∼5 km of crust by volcanic flows with compositions spanning the range of material now visible on the surface, distributed heterogeneously across the planet. This emerging picture strongly suggests that the crust of Mercury is characterized by a much more substantial component of early volcanism than represented by the phase of mare emplacement on Earth’s Moon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号