首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
大气科学   3篇
地球物理   14篇
地质学   7篇
海洋学   2篇
天文学   2篇
自然地理   4篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有32条查询结果,搜索用时 16 毫秒
21.
From multi-ensembles of climate simulations using the Community Climate System Model version 3, global climate changes have been investigated focusing on long-term responses to stabilized anthropogenic forcings. In addition to the standard forcing scenarios for the current international assessment, an overshoot scenario, where radiative forcings are decreased from one stabilized level to another, is also considered. The globally-averaged annual surface air temperature increases during the twenty-first century by 2.58 and 1.56°C for increased forcings under two future scenarios denoted by A1B and B1, respectively. These changes continue but at much slower rates in later centuries under forcings stabilized at year 2100. The overshoot scenario provides a different pathway to the lower B1 level by way of the greater A1B level. This scenario results in a surface climate similar to that in the B1 scenario within 100 years after the forcing reaches the B1 level. Contrasting to the surface changes, responses in the ocean are significantly delayed. It is estimated from the linear response theory that temperature changes under stabilized forcings to a final equilibrium state in the A1B (B1) scenario are factors of 0.3–0.4, 0.9, and 17 (0.3, 0.6, and 11) to changes during the twenty-first century, respectively, for three ocean layers of the surface to 100, 100–500, and 500 m to the bottom. Although responses in the lower ocean layers imply a nonlinear behavior, the ocean temperatures in the overshoot and B1 scenarios are likely to converge in their final equilibrium states.  相似文献   
22.
Width and temperature of rock joints were automatically monitored in the Japanese Alps. Three years of monitoring on a sandstone rock face shows two seasonal peaks of joint widening in autumn and spring. The autumn events are associated with short‐term freeze–thaw cycles, and the magnitude of widening reflects the freezing intensity and water availability. The short‐term freezing can produce wedging to a depth of at least 20 cm. The spring events follow a rise in the rock surface temperature to 0 °C beneath the seasonal snowcover, and likely originate from refreezing of meltwater entering the joint. Some of these events contribute to permanent enlargement of the joint. Two other joints on nearby rock faces experience only sporadic widening accompanying freeze–thaw cycles and insignificant permanent enlargement. Observations indicate that no single thermal criterion can explain frost weathering. The temperature range at which wedging occurs varies with the bedrock conditions, water availability and duration of freezing. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
23.
An experimental investigation of the cyclic shear behaviour of steel box girders was conducted on one‐quarter scale models, comprising of two specimens with longitudinally unstiffened webs and one specimen with longitudinally stiffened webs. All the specimens exhibited ductile behaviour. The tests evidenced significant increases in the shear strength and energy dissipation capacity regarding the use of thicker webs and the provision of longitudinal web stiffeners. The web stiffeners also enhanced the stable hysteresis behaviour without substantial degradation in the energy dissipation due to pinching. The test results are compared with the shear behaviour simulated by inelastic large deformation analysis incorporated with a sophisticated constitutive model. The hysteresis behaviour, peak cyclic shear stresses, energy dissipation, and deformation shapes of the three specimens are satisfactorily predicted by the analysis. It is verified that the presented analytical method can be used precisely for further investigations of box girders in shear. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
24.
In order to estimate the deposition rate of extraterrestrial material onto a manganese crust in a search for supernova debris, we analyzed the contents of 10Be, 230Th, 231Pa, and 239,240Pu in a sample of manganese crust collected from the North Pacific Ocean. On the basis of the depth profile of 10Be, the growth rate of the manganese crust was determined to be 2.3 mm Myr−1. The uptake rates of 10Be, 230Th, and 231Pa onto the manganese crust were estimated to be 0.22–0.44%, 0.11–0.73%, and 1.4–4.5%, respectively, as compared to the deposition rates onto the deep-sea sediments near the sampling station, while that for 239,240Pu was 0.14% as compared to the total inventory of seawater and sediment column. Assuming that sinking particles represent 0.11–4.5% of the uptake rates, the deposition rate of extraterrestrial material onto the manganese crust was estimated to be 2–800 μg cm−2Myr−1 according to the uptake of 10Be onto the manganese crust. Further, our estimate is similar to the value of 9–90 μg cm− 2Myr−1 obtained using the integrated global production rate of 10Be and the deposition rate of 10Be onto the manganese crust.  相似文献   
25.
The phenomenon of aftershocks is studied in view of science of complexity. In particular, three different concepts are examined: (i) the complex-network representation of seismicity, (ii) the event-event correlations, and (iii) the effects of long-range memory. Regarding (i), it is shown that the clustering coefficient of the complex earthquake network exhibits a peculiar behavior at and after main shocks. Regarding (ii), it is found that aftershocks experience aging, and the associated scaling holds. And regarding (iii), the scaling relation to be satisfied by a class of singular Markovian processes is violated, implying the existence of the long-range memory in processes of aftershocks.  相似文献   
26.
Sedimentation and welding processes of the high temperature dilute pyroclastic density currents and fallout erupted at 7.3 ka from the Kikai caldera are discussed based on the stratigraphy, texture, lithofacies characteristics, and components of the resulting deposits. The welded eruptive deposits, Unit B, were produced during the column collapse phase, following a large plinian eruption and preceding an ignimbrite eruption, and can be divided into two subunits, Units Bl and Bu. Unit Bl is primarily deposited in topographic depressions on proximal islands, and consists of multiple thin (< 1 m) flow units with stratified and cross-stratified facies with various degrees of welding. Each thin unit appears as a single aggradational unit, composed of a lower lithic-rich layer or pod and an upper welded pumice-rich layer. Lithic-rich parts are fines-depleted and are composed of altered country rock, fresh andesite lava, obsidian clasts with chilled margins, and boulders. The overlying Unit Bu shows densely welded stratified facies, composed of alternating lithic-rich and pumice-rich layers. The layers mantle lower units and are sometimes viscously deformed by ballistics. The sedimentary characteristics of Unit Bl such as welded stratified or cross-stratified facies indicate that high temperature dilute pyroclastic density currents were repeatedly generated from limited magma-water interactions. It is thought that dense brittle particles were segregated in a turbulent current and were immediately buried by deposition of hot, lighter pumice-rich particles, and that this process repeated many times. It is also suggested that the depositional temperature of eruptive materials was high and the eruptive style changed from a normal plinian eruption, through surge-generating explosions (Unit Bl), into an agglutinate-dominated fallout eruption (Unit Bu). On the basis of field data, welded pyroclastic surge deposits could be produced only under specific conditions, such as (1) rapid accumulation of pyroclastic particles sufficiently hot to weld instantaneously upon deposition, and (2) elastic particles' interactions with substrate deformation. These physical conditions may be achieved within high temperature and highly energetic pyroclastic density currents produced by large-scale explosive eruptions.  相似文献   
27.
28.
The 1934–1935 Showa Iwo-jima eruption started with a silicic lava extrusion onto the floor of the submarine Kikai caldera and ceased with the emergence of a lava dome. The central part of the emergent dome consists of lower microcrystalline rhyolite, grading upward into finely vesicular lava, overlain by coarsely vesicular lava with pumice breccia at the top. The lava surface is folded, and folds become tighter toward the marginal part of the dome. The dome margin is characterized by two zones: a fracture zone and a breccia zone. The fracture zone is composed of alternating layers of massive lava and welded oxidized breccia. The breccia zone is the outermost part of the dome, and consists of glassy breccia interpreted to be hyaloclastite. The lava dome contains lava with two slightly different chemical compositions; the marginal part being more dacitic and the central part more rhyolitic. The fold geometry and chemical compositions indicate that the marginal dacite had a slightly higher temperature, lower viscosity, and lower yield stress than the central rhyolite. The high-temperature dacite lava began to effuse in the earlier stage from the central crater. The front of the dome came in contact with seawater and formed hyaloclastite. During the later stage, low-temperature rhyolite lava effused subaerially. As lava was injected into the growing dome, the fracture zone was produced by successive fracturing, ramping, and brecciation of the moving dome front. In the marginal part, hyaloclastite was ramped above the sea surface by progressive increments of the new lava. The central part was folded, forming pumice breccia and wrinkles. Subaerial emplacement of lava was the dominant process during the growth of the Showa Iwo-jima dome.Editorial Responsibility J. McPhie  相似文献   
29.
Constraining physical parameters of tephra dispersion and deposition from explosive volcanic eruptions is a significant challenge, because of both the complexity of the relationship between tephra distribution and distance from the vent and the difficulties associated with direct and comprehensive real-time observations. Three andesitic subplinian explosions in January 2011 at Shinmoedake volcano, Japan, are used as a case study to validate selected empirical and theoretical models using observations and field data. Tephra volumes are estimated using relationships between dispersal area and tephra thickness or mass/area. A new cubic B-spline interpolation method is also examined. Magma discharge rate is estimated using theoretical plume models incorporating the effect of wind. Results are consistent with observed plume heights (6.4–7.3 km above the vent) and eruption durations. Estimated tephra volumes were 15–34?×?106 m3 for explosions on the afternoon of 26 January and morning of 27 January, and 5.0–7.6?×?106 m3 for the afternoon of 27 January; magma discharge rates were in the range 1–2?×?106 kg/s for all three explosions. Clast dispersal models estimated plume height at 7.1?±?1 km above the vent for each explosion. The three subplinian explosions occurred with approximately 12-h reposes and had similar mass discharge rates and plume heights but decreasing erupted magma volumes and durations.  相似文献   
30.
Norikazu Matsuoka   《Geomorphology》2008,99(1-4):353-368
Rates and processes of frost weathering in the Alps were investigated by visual observations of intensively shattered rocks, continuous monitoring of frost wedging and rock temperatures in bedrock and measurements of rockfall activity. Rapid frost weathering of hard-intact rocks occurs along lakes and streams where seasonal freezing promotes ice segregation in the rock. Otherwise, rocks require pre-existing weakness or a long exposure period for intensively shattered. Automated monitoring shows that crack opening occurs at three scales, including small opening accompanying short-term frost cycles, slightly larger movements during seasonal freezing and occasional large opening originating from refreezing of snow-melt water during seasonal thawing. The opening events require at least partial water saturation in the crack. The repetition of crack opening (frost wedging) results in permanent opening and finally debris dislocation. Debris collections below fractured rockwalls show that pebble falls occur at an average rate of about 0.1 mm a− 1 with significant spatial and inter-annual variations. Occasional large boulder falls significantly raise the rockwall erosion rates, controlled by such factors as the joint distribution in the bedrock, repetition of annual freeze–thaw cycles and extraordinary summer thaw.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号