首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   12篇
  国内免费   11篇
测绘学   23篇
大气科学   81篇
地球物理   135篇
地质学   161篇
海洋学   41篇
天文学   72篇
综合类   2篇
自然地理   48篇
  2021年   4篇
  2020年   10篇
  2019年   5篇
  2018年   4篇
  2017年   12篇
  2016年   10篇
  2015年   9篇
  2014年   12篇
  2013年   31篇
  2012年   17篇
  2011年   22篇
  2010年   23篇
  2009年   21篇
  2008年   17篇
  2007年   22篇
  2006年   25篇
  2005年   24篇
  2004年   17篇
  2003年   21篇
  2002年   14篇
  2001年   12篇
  2000年   5篇
  1999年   12篇
  1998年   8篇
  1996年   7篇
  1995年   7篇
  1994年   13篇
  1993年   9篇
  1992年   7篇
  1991年   6篇
  1989年   9篇
  1987年   6篇
  1985年   6篇
  1984年   8篇
  1983年   8篇
  1982年   6篇
  1981年   12篇
  1980年   7篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   12篇
  1974年   3篇
  1973年   4篇
  1971年   3篇
  1970年   5篇
  1969年   5篇
  1968年   6篇
  1967年   7篇
排序方式: 共有563条查询结果,搜索用时 234 毫秒
41.

Background  

The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO2 from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-thaw activation are not absolutely clear and need clarifying. We investigated the effect of repeated freezing-thawing events on CO2 emission from intact arable and forest soils (Luvisols, loamy silt; Central Germany) at different moisture (65% and 100% of WHC).  相似文献   
42.
 Samples of basalt were collected during the Rapid Response cruise to Loihi seamount from a breccia that was probably created by the July to August 1996 Loihi earthquake swarm, the largest swarm ever recorded from a Hawaiian volcano. 210Po–210Pb dating of two fresh lava blocks from this breccia indicates that they were erupted during the first half of 1996, making this the first documented historical eruption of Loihi. Sonobuoys deployed during the August 1996 cruise recorded popping noises north of the breccia site, indicating that the eruption may have been continuing during the swarm. All of the breccia lava fragments are tholeiitic, like the vast majority of Loihi's most recent lavas. Reverse zoning at the rim of clinopyroxene phenocrysts, and the presence of two chemically distinct olivine phenocryst populations, indicate that the magma for the lavas was mixed just prior to eruption. The trace element geochemistry of these lavas indicates there has been a reversal in Loihi's temporal geochemical trend. Although the new Loihi lavas are similar isotopically and geochemically to recent Kilauea lavas and the mantle conduits for these two volcanoes appear to converge at depth, distinct trace element ratios for their recent lavas preclude common parental magmas for these two active volcanoes. The mineralogy of Loihi's recent tholeiitic lavas signify that they crystallized at moderate depths (∼8–9 km) within the volcano, which is approximately 1 km below the hypocenters for earthquakes from the 1996 swarm. Taken together, the petrological and seismic evidence indicates that Loihi's current magma chamber is considerably deeper than the shallow magma chamber (∼3–4 km) in the adjoining active shield volcanoes. Received: 21 August 1997 / Accepted: 15 February 1998  相似文献   
43.
Properties of the so-called strange modes occurring in linear stability calculations of stellar models are discussed. The behaviour of these modes is compared for two different sets of stellar models, for very massive zero-age main-sequence stars and for luminous hydrogen-deficient stars, both with high luminosity-to-mass ratios. We have found that the peculiar behaviour of the frequencies of the strange modes with the change of a control parameter is caused by the pulsation amplitude of a particular eigenmode being strongly confined to the outer part of the envelope, around the density inversion zone. The frequency of a strange mode changes because the depth of the confinement zone changes with the control parameter. Weakly non-adiabatic strange modes tend to be overstable because the amplitude confinement quenches the effect of radiative damping. On the other hand, extremely non-adiabatic strange modes become overstable because the perturbation of radiation force (gradient of radiation pressure) provides a restoring force that can be out of phase with the density perturbation. We discuss this mechanism by using a plane-parallel two-zone model.  相似文献   
44.
An analytic solution for a steady, horizontally homogeneous boundary layer with rotation, % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgaaaa!38AA! \[ f \] , and surface friction velocity, û*, subjected to surface buoyancy characterized by Obukhov length L, is proposed as follows. Nondimensional variables are % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6jabg2 % da9iaadAgacaWG6bGaai4laiabeE7aOnaaBaaaleaacqGHxiIkaeqa % aOGaamyDamaaBaaaleaacqGHxiIkaeqaaOGaaiilaiqadwhagaqcai % abg2da9iabeE7aOnaaBaaaleaacqGHxiIkaeqaaOGabmyvayaajaGa % ai4laiqadwhagaqcamaaBaaaleaacqGHxiIkaeqaaOGaaiilaiqads % fagaqcaiabg2da9iqbes8a0zaajaGaai4laiaadwhadaWgaaWcbaGa % ey4fIOcabeaakiqadwhagaqcamaaBaaaleaacqGHxiIkcaGGSaaabe % aaaaa!5587! \[ \zeta = fz/\eta _ * u_ * ,\hat u = \eta _ * \hat U/\hat u_ * ,\hat T = \hat \tau /u_ * \hat u_{ * ,} \] , where carets denote complex (vector) quantities; Û is the mean velocity; % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiqbes8a0zaaja% aaaa!3994!\[\hat \tau \]is the kinematic turbulent stress; and % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa % aaleaacqGHxiIkaeqaaOGaeyypa0JaaiikaiaaigdacqGHRaWkcqaH % +oaEdaWgaaWcbaGaamOtaaqabaGccaWG1bWaaSbaaSqaaiabgEHiQa % qabaGccaGGVaGaamOuamaaBaaaleaacaWGJbaabeaakiaadAgacaWG % mbGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaa % aa!4B1F! \[ \eta _ * = (1 + \xi _N u_ * /R_c fL)^{ - 1/2} \]is a stability parameter. The constant % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa % aaleaacaWGobaabeaaaaa!3A81! \[\xi _N \] is the ratio of the maximum mixing length(% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaca% WGTbaabeaaaaa!38DD!\[_m \]) to the PBL depth, % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa % WcbaGaey4fIOcabeaakiaac+cacaWGMbaaaa!3B7C! \[ u_ * /f \] , for neutrally stable conditions; and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa% WcbaGaam4yaaqabaaaaa!39AA!\[R_c\](the critical flux Richardson number) is the ratio % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa % WcbaGaamyBaaqabaGccaGGVaGaamitaaaa!3B5C! \[ l_m /L \] under highly stable conditions. Profiles of stress and velocity in the ocean (<0) are given by % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGabm % yDayaajaGaeyypa0ZaaiqaaqaabeqaaiabgkHiTiaadMgacqaH0oaz % caWGLbWaaWbaaSqabeaacqaH0oazcqaH2oGEaaGccaqGGaGaaeiiai % aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa % aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca % qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa % bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae % iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG % GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc % cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii % aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa % GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca % caqGGaGaaeiiaiaabccacaqGGaGaeqOTdONaeyizImQaeyOeI0Iaeq % OVdG3aaSbaaSqaaiaad6eaaeqaaaGcbaGaeyOeI0IaamyAaiabes7a % KjaadwgadaahaaWcbeqaaiabes7aKjabe67a4naaBaaameaacaWGob % aabeaaaaGccqGHsisldaWcaaqaaiabeE7aOnaaBaaaleaacaGGQaaa % beaaaOqaaiaadUgaaaWaamWaaeaaciGGSbGaaiOBamaalaaabaWaaq % WaaeaacqaH2oGEaiaawEa7caGLiWoaaeaacqaH+oaEdaWgaaWcbaGa % amOtaaqabaaaaOGaey4kaSIaaiikaiabes7aKjabgkHiTiaadggaca % GGPaGaaiikaiabeA7a6jabgUcaRiabe67a4naaBaaaleaacaWGobaa % beaakiaacMcacqGHsisldaWcaaqaaiaadggaaeaacaaIYaaaaiabes % 7aKjaacIcacqaH2oGEdaahaaWcbeqaaiaaikdaaaGccqGHsislcqaH % +oaEdaqhaaWcbaGaamOtaaqaaiaaikdaaaGccaGGPaaacaGLBbGaay % zxaaGaaeiiaiaabccacaqGGaGaaeiiaiabeA7a6naaBaaaleaacaaI % WaaabeaakiabgwMiZkabeA7a6jabg6da+iabgkHiTiabe67a4naaBa % aaleaacaWGobaabeaaaaGccaGL7baaaSqabKazbaiabaGabmivayaa % jaGaeyypa0JaamyzamaaCaaajqMaacqabeaacaWGPbGaeqiTdqMaeq % OTdOhaaaaaaaa!C5AA! \[ \mathop {\hat u = \left\{ \begin{array}{l} - i\delta e^{\delta \zeta } {\rm{ }}\zeta \le - \xi _N \\ - i\delta e^{\delta \xi _N } - \frac{{\eta _* }}{k}\left[ {\ln \frac{{\left| \zeta \right|}}{{\xi _N }} + (\delta - a)(\zeta + \xi _N ) - \frac{a}{2}\delta \end{array} \right.}\limits^{\hat T = e^{i\delta \zeta } } \] where % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l % b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr % 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabg2 % da9maabmaabaGaamyAaiaac+cacaWGRbGaeqOVdG3aaSbaaSqaaiaa % d6eaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4lai % aaikdaaaGccaGG7aGaamyyaiabg2da9iabeE7aOnaaBaaaleaacqGH % xiIkaeqaaOGaaiikaiaaigdacaGGVaGaeqOVdG3aaSbaaSqaaiaad6 % eaaeqaaOGaey4kaSIaamyDamaaBaaaleaacqGHxiIkaeqaaOGaai4l % aiaadAgacaWGmbGaamOuamaaBaaaleaacaWGJbaabeaakiaacMcaca % GGOaGaaGymaiabgkHiTiabeE7aOnaaBaaaleaacqGHxiIkaeqaaOGa % aiykaiaacUdaaaa!5CB6! \[ \delta = \left( {i/k\xi _N } \right)^{1/2} ;a = \eta _ * (1/\xi _N + u_ * /fLR_c )(1 - \eta _ * ); \] and 0 is the nondimensional surface roughness. The constants are% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa% WcbaGaam4yaaqabaaaaa!39AA!\[R_c \]= 0.2 and% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa% aaleaacaWGobaabeaaaaa!3A81!\[\xi _N \]= 0.052. The solutions for the atmosphere are similar except û is the nondimensional velocity The model produces satisfactory predictions of geostrophic drag and near-surface current (wind) profiles under stable stratification.  相似文献   
45.
The distribution of Mn was examined in the bottom sediments and water column (suspended paniculate matter) of the Laurentian Trough. Gulf of St. Lawrence. A characteristic profile of Mn with depth in the sediment consisted of a Mn-enriched surface oxidized zone, less than 20 mm thick, and a Mn-depleted subsurface reducing zone. A subsurface Mn maximum occurred within the oxidized zone. Below this maximum the concentration dropped sharply to nearly constant residual levels in the reducing zone. The accumulating estuarine sediments are deficient in Mn compared to the river input of suspended matter and are definitely not the ultimate sink for manganese. Manganese escapes from the sediment by diffusion and resuspension, forming Mn-enriched, fine-grained particles which are flushed out in the estuarine circulation. 5.0 × 109gyr?1 of Mn, or 50% more than the river input of dissolved Mn. are exported to the open ocean. In spite of the efficient mobilization and export of Mn, the quantity exported is a small fraction (0.2%) of the total flux to the deep-sea sediments. This is related to the low levels of paniculate matter transported by the St. Lawrence River. The export phénomenon, however, is probably true of many coastal regions of muddy sediments and thus has interesting implications for the oceanic budget of Mn.  相似文献   
46.
Rosemary Bank is a non-uniformly magnetised seamount in the northern Rockall Trough. The reversely magnetised major component of the anomaly field was simulated by a numerical method and modelled using the Talwani three-dimensional magnetics program. The results suggest a higher Koenigsberger ratio than earlier reported for Rosemary Bank and a remanent magnetisation vector compatible with post-Jurassic formation and probably of a Late Cretaceous to Tertiary age. The limited depth to the base of the model implies that Rosemary Bank post-dates the underlying basement in agreement with a volcanic origin. The residual of the observed anomaly field is interpreted as being caused by normally magnetised bodies within and on top of the bank. This suggests subsequent volcanic activity during an interval of normal polarity.  相似文献   
47.
The Rockall Trough separates the Rockall Plateau microcontinent from the shelf and slope west of the British Isles. The structure and age of the trough has been the source of considerable discussion. Although widely considered to be of oceanic origin, postulated ages for the spreading range from Permian to Cretaceous. New seismic profiles linked to the IPOD sites in the Bay of Biscay and to oceanic anomalies of known age are used to present a new assessment of the age and structure of the southern Rockall Trough. It is concluded that about 120 km of ocean crust is present in the trough and that spreading took place in the Albian-Maastrichtian interval.  相似文献   
48.
A variety of air-photo interpretation criteria need to be used for detecting areas of potential subsidence. An initial step is to search for past failures showing on air photographs, to establish the cause and to interpret the boundaries of the environment that might be affected. Causes detectable include karstic terrain, areas liable to piping, or containing concealed peat, old shafts, and stratiform or vein workings. Airborne imaging conditions can be selected to improve the possibility of detection in some situations.

The technique can indicate situations where risks are high, but cannot be used to map with certainty voids liable to collapse.  相似文献   

49.
A two-dimensional time-dependent Earth-atmosphere model is developed which can be applied to the study of a class of atmospheric boundary-layer flows which owe their origin to horizontal inhomogeneities with respect to surface roughness and temperature. Our main application of the model is to explore the governing physical mechanisms of nocturnal urban atmospheric boundarylayer flow.A case study is presented in which a stable temperature stratification is assumed to exist in the rural upwind area. It is shown through integration of the numerical model that as this air passes over a city, the heat is redistributed due to increased surface friction (and hence increased turbulent mixing). This redistribution of heat results in the formation of an urban heat island.Additional numerical integrations of the model are conducted to examine the dependence of induced perturbations on: (1) the upwind temperature inversion; (2) the geostrophic wind speed; and (3) urbanization. The results show a linear relationship between heat-island intensity and the rural temperature inversion with the heat island increasing in intensity as the upwind inversion becomes stronger; that the heat-island intensity close to the surface is inversely proportional to the geostrophic wind; and that the effects of anthropogenic heat cause an increase in the perturbation temperature with the perturbation extending to higher altitudes. From this study, we conclude that with an upwind temperature inversion, a city of any size should generate a heat island as a result of increased surface roughness. The heat-island intensity should increase with city size because of two factors: larger cities are usually aerodynamically rougher; and larger cities have a larger anthropogenic heat output.Research supported in part by NSF Grant GA-16822.  相似文献   
50.
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada.The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of hörst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament.Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE—SW compression axis (σ1) and an EW to NW—SE extension axis (σ3).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号