首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   903篇
  免费   33篇
  国内免费   12篇
测绘学   53篇
大气科学   82篇
地球物理   206篇
地质学   276篇
海洋学   81篇
天文学   151篇
综合类   2篇
自然地理   97篇
  2021年   11篇
  2020年   16篇
  2019年   12篇
  2018年   10篇
  2017年   21篇
  2016年   26篇
  2015年   16篇
  2014年   19篇
  2013年   57篇
  2012年   28篇
  2011年   32篇
  2010年   31篇
  2009年   44篇
  2008年   32篇
  2007年   42篇
  2006年   35篇
  2005年   29篇
  2004年   26篇
  2003年   36篇
  2002年   37篇
  2001年   28篇
  2000年   19篇
  1999年   21篇
  1998年   19篇
  1997年   12篇
  1996年   17篇
  1995年   10篇
  1994年   14篇
  1993年   7篇
  1992年   7篇
  1991年   10篇
  1989年   7篇
  1987年   10篇
  1986年   5篇
  1985年   14篇
  1984年   14篇
  1983年   13篇
  1982年   10篇
  1981年   12篇
  1980年   14篇
  1979年   6篇
  1978年   8篇
  1977年   8篇
  1976年   11篇
  1975年   21篇
  1973年   7篇
  1971年   7篇
  1970年   5篇
  1968年   6篇
  1967年   7篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
101.
The Middle Ordovician Rosroe Formation consists of some 1350 m of coarse, mainly siliciclastic to volcaniclastic sedimentary rocks, deposited in a submarine fan environment, and is restricted to the southern limb of the South Mayo Trough, western Ireland. Discrete allochthonous blocks, reaching 5 m in size, are present in the formation at several localities. Conodonts recovered from these blocks, collected from two separate locations, are of late Early and mid Mid Ordovician age. The conodonts have high conodont‐alteration indices (CAI 5) indicative of temperatures as high as 300o to max. 480 °C; some found in the Lough Nafooey area have abnormally high indices (CAI 6), which correspond to temperatures of about 360o to max. 550 °C. The oldest fauna is dominated by Periodon aff. aculeatus and characterized by Oepikodus evae typical of the Oepikodus evae Zone (Floian Stage; Stage Slices Fl2–3, Lower Ordovician). The younger conodont assemblage, characterized by Periodon macrodentatus associated with Oistodella pulchra, is referred to the P. macrodentatus conodont Biozone (lower Darriwilian; Stage Slices Dw1–2). The Rosroe conodont assemblages are of Laurentian affinity; comparable faunas are well known from several locations along the east to south‐eastern platform margin of Laurentia and the Notre Dame subzone of central Newfoundland, Canada. The faunal composition from the limestone blocks suggests a shelf edge to slope (or fringing carbonate) setting. The faunal assemblages are coeval with, respectively, the Tourmakeady Formation (Floian–Dapingian) and Srah Formation (Darriwilian) in the Tourmakeady Volcanic Group in the eastern part of the South Mayo Trough and probably are derived from the same or similar laterally equivalent short‐lived carbonate successions that accumulated at offshore ‘peri‐Laurentian’ islands, close to and along the Laurentian margin. During collapse of the carbonate system in the late Mid Ordovician, the blocks were transported down a steep slope and into deep‐water by debris flows, mixing with other rock types now found in the coarse polymict clastics of the Rosroe Formation. The faunas fill the stratigraphical ‘gap’ between the Lower Ordovician Lough Nafooey Volcanic Group and the upper Middle Ordovician Rosroe Formation in the South Mayo Trough and represent a brief interval conducive to carbonate accumulation in an otherwise siliciclastic‐ and volcaniclastic‐dominated sedimentary environment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
102.
Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25–500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.  相似文献   
103.
The western part of the Ronda peridotite massif (Southern Spain) consists mainly of highly foliated spinel-peridotite tectonites and undeformed granular peridotites that are separated by a recrystallization front. The spinel tectonites are interpreted as volumes of ancient subcontinental lithospheric mantle and the granular peridotites as a portion of subcontinental lithospheric mantle that underwent partial melting and pervasive percolation of basaltic melts induced by Cenozoic asthenospheric upwelling. The Re–Os isotopic signature of sulfides from the granular domain and the recrystallization front mostly coincides with that of grains in the spinel tectonites. This indicates that the Re–Os radiometric system in sulfides was highly resistant to partial melting and percolation of melts induced by Cenozoic lithospheric thermal erosion. The Re–Os isotopic systematics of sulfides in the Ronda peridotites thus mostly conserve the geochemical memory of ancient magmatic events in the subcontinental lithospheric mantle. Os model ages record two Proterozoic melting episodes at ~1.6 to 1.8 and 1.2–1.4 Ga, respectively. The emplacement of the massif into the subcontinental lithospheric mantle probably coincided with one of these depletion events. A later metasomatic episode caused the precipitation of a new generation of sulfides at ~0.7 to 0.9 Ga. These Proterozoic Os model ages are consistent with results obtained for several mantle suites in Central/Western Europe and Northern Africa as well as with the Nd model ages of the continental crust of these regions. This suggests that the events recorded in mantle sulfides of the Ronda peridotites reflect different stages of generation of the continental crust in the ancient Gondwana supercontinent.  相似文献   
104.
On 16 July 1945, the first atomic bomb was detonated at the Alamogordo Bombing range in New Mexico, USA. Swept up into the nuclear cloud was the surrounding desert sand, which melted to form a green glassy material called ‘trinitite’. Contained within the glass are melted bits of the first atomic bomb and the support structures and various radionuclides formed during the detonation. The glass itself is marvelously complex at the tens to hundreds of micrometre scale, and besides glasses of varying composition also contains unmelted quartz grains. Air transport of the melted material led to the formation of spheres and dumbbell shaped glass particles. Similar glasses are formed during all ground level nuclear detonations and contain forensic information that can be used to identify the atomic device.  相似文献   
105.
The U-Pb geochronology of perovskite is a powerful tool in constraining the emplacement age of silica-undersaturated rocks. The trace-element and U-Pb isotopic compositions of perovskite from clinopyroxenite and silicocarbonatite from the Afrikanda plutonic complex (Kola, Russia) were determined by laser-ablation inductively-coupled mass-spectrometry (LA-ICP-MS). In addition, the Sr isotopic composition of perovskite was measured by isotope-dilution mass-spectrometry to better constrain the relations between its host rocks. Perovskite from the two rock types shows a different degree of enrichment in Na, Mg, Mn, Pb, Fe, Al, V, rare-earth elements, Zr, Hf, Th, U and Ta. The perovskite 87Sr/86Sr values are within analytical uncertainty of one another and fall within the range of mantle values. The 206Pb/238U ages (corrected for common lead using 207Pb-method) of perovskite from silicocarbonatite statistically yield a single population with a weighted mean of 371?±?8 Ma (2σ; MSWD?=?0.071). This age is indistinguishable, within uncertainty, to the clinopyroxenite weighted mean 206Pb/238U age of 374?±?10 Ma (2σ; MSWD?=?0.18). Our data are in good agreement with the previous geochronological study of the Afrikanda complex. The observed variations in trace-element composition of perovskite from silicocarbonatite and clinopyroxenite indicate that these rocks are not related by crystal fractionation. The Sr isotopic ratios and the fact that the two rocks are coeval suggest that they were either produced from a single parental melt by liquid immiscibility, or from two separate magmas derived at different degrees of partial melting from an isotopically equilibrated, but modally complex mantle source.  相似文献   
106.
Water Flows Toward Power: Socioecological Degradation of Lake Urmia,Iran   总被引:1,自引:0,他引:1  
Water is an invaluable resource, and equitable access to it is a fundamental human right. Disenfranchised groups often lose access to water resources because their interests are not well represented by decision makers. Excluding these groups from resource management policy often results in myopic decisions that contribute to further ecosystem damage. We describe the ecological degradation of Lake Urmia in Iran, which has recently experienced increased salinity and declining water quantity. The lake is a UNESCO Biosphere Reserve and Ramsar site, and supports unique biodiversity in the region. The lake's decline is driven by the destruction of Zagros forests and the government's water policies, which diverted water to more politically connected agricultural land users, increasing social inequity and prompting more deforestation. The most straightforward restoration solution is to discontinue the diversions and allow critical inflows to recharge Lake Urmia, preserving the lake and wetlands for migratory birds, tourists, and local communities.  相似文献   
107.
Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.  相似文献   
108.
Spinel lherzolite and wehrlite xenoliths from the Cenozoic Calatrava volcanic field carry the geochemical imprint of metasomatic agents that have affected the subcontinental lithospheric mantle beneath Central Iberia. Some xenoliths (mainly wehrlites) were enriched in REE, Sr, P, and CO2 by silicic-carbonate-rich metasomatic melts/fluids, while others record the effects of subduction-related hydrous silicate fluids that have precipitated amphibole and induced high Ti/Eu in primary clinopyroxene. The petrographic observations and geochemical data suggest that interstitial glass in the xenoliths represent the quenched products of Si-rich melts that infiltrated the mantle peridotite shortly before the entrainment of the xenoliths in the host magmas that erupted ca 2 million years ago. During their infiltration, the metasomatic melts reacted with peridotite, resulting in silica enrichment, while remobilizing grains of iron-rich monosulfide solid solution (Fe-rich Mss) initially enclosed in, or intergranular to, primary olivine and pyroxenes. In situ laser ablation inductively coupled plasma-mass spectrometry analysis of single sulfide grains reveals that the Fe-rich Mss in glass shows platinum-group element (PGE) patterns and 187Os/188Os compositions identical to the Fe-rich Mss occurring as inclusions in, or at grain boundaries of primary silicates. Moreover, independent of its microstructural position, Fe-rich Mss exhibits PGE and 187Os/188Os signatures typical of Mss either residual after partial melting or crystallized directly from sulfide melts. Our findings reveal that young metasomatic melt(s)/fluid(s) may carry remobilized sulfides with PGE and Os-isotopic signatures identical to those of texturally older sulfides in the peridotite xenolith. These sulfides thus still provide useful information about the timing and nature of older magmatic events in the subcontinental mantle.  相似文献   
109.
We present results from three XMM–Newton observations of the M31 low mass X-ray binary (LMXB) XMMU J004314.4+410726.3 (Bo 158), spaced over 3 d in 2004 July. Bo 158 was the first dipping LMXB to be discovered in M31. Periodic intensity dips were previously seen to occur on a 2.78-h period, due to absorption in material that is raised out of the plane of the accretion disc. The report of these observations stated that the dip depth was anticorrelated with source intensity. In light of the 2004 XMM–Newton observations of Bo 158, we suggest that the dip variation is due to precession of the accretion disc. This is to be expected in LMXBs with a mass ratio ≲0.3 (period ≲4 h), as the disc reaches the 3:1 resonance with the binary companion, causing elongation and precession of the disc. A smoothed particle hydrodynamics simulation of the disc in this system shows retrograde rotation of a disc warp on a period of  ∼11 P orb  , and prograde disc precession on a period of  29 ± 1 P orb  . This is consistent with the observed variation in the depth of the dips. We find that the dipping behaviour is most likely to be modified by the disc precession, hence we predict that the dipping behaviour repeats on an  81 ± 3 h  cycle.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号