首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   28篇
  国内免费   1篇
测绘学   17篇
大气科学   78篇
地球物理   247篇
地质学   274篇
海洋学   97篇
天文学   134篇
综合类   3篇
自然地理   138篇
  2020年   8篇
  2019年   9篇
  2018年   27篇
  2017年   16篇
  2016年   20篇
  2015年   17篇
  2014年   21篇
  2013年   40篇
  2012年   38篇
  2011年   46篇
  2010年   33篇
  2009年   32篇
  2008年   41篇
  2007年   35篇
  2006年   34篇
  2005年   34篇
  2004年   24篇
  2003年   25篇
  2002年   34篇
  2001年   19篇
  2000年   18篇
  1999年   14篇
  1998年   19篇
  1997年   16篇
  1996年   9篇
  1995年   16篇
  1994年   11篇
  1993年   18篇
  1992年   12篇
  1991年   6篇
  1990年   13篇
  1989年   9篇
  1988年   10篇
  1987年   12篇
  1986年   18篇
  1985年   19篇
  1984年   17篇
  1983年   23篇
  1982年   18篇
  1981年   8篇
  1980年   19篇
  1979年   15篇
  1978年   20篇
  1977年   12篇
  1976年   16篇
  1975年   7篇
  1974年   11篇
  1973年   12篇
  1972年   5篇
  1971年   5篇
排序方式: 共有988条查询结果,搜索用时 31 毫秒
141.
Properties of iron at the Earth's core conditions   总被引:2,自引:0,他引:2  
Summary. The phase diagram of iron up to 330 GPa is solved using the experimental data of static high pressure (up to 11 GPa) and the experimental data of shock wave data (up to 250 GPa). A solution for the highest triple point is found ( P = 280 GPa and T = 5760 K) by imposing the thermodynamic constraints of triple points. This pressure of the triple point is less than the pressure of the inner core–outer core boundary of the Earth. These results indicate that the density of iron at the inner core–outer core boundary pressure is close to 13 g cm−3, which lies close to the seismic solutions of the Earth at that pressure. It is thus concluded that the Earth's inner core is very likely to be virtually pure iron in its hexagonal close packed (hcp) phase.
It is shown that four properties of the Earth's inner core determined from seismology are close in value to the corresponding properties of hcp iron at inner core conditions: density, bulk modulus, longitudinal velocity, and Poisson's ratio. The density–pressure profile of hcp iron at inner core conditions matches the density–pressure profile of the inner core as determined by seismic methods, within the spread of values given by recent seismic models.
This indicates that the Earth is slowly cooling, the Earth's inner core is growing by crystallization, and the impurities of the core are concentrated in the outer core. The calculated temperature at the Earth's centre is 6450 K.  相似文献   
142.
The objectives of this study were to measure: (1) Irgarol and GS26575 (major metabolite) during the peak 2004 boating season at selected marinas and reference areas in the Carolinian Zoogeographic Province of the Eastern United States; (2) Irgarol and GS26575 at selected stations during the summer months in the Back Creek/Severn River area in Maryland in 2003 and 2004; and (3) structural and functional characteristics of resident phytoplankton communities concurrently with Irgarol and GS26575 monitoring in Back Creek/Severn River area. Irgarol concentrations from 14 marinas in the Carolinian Province ranged from non-detectable (<1 ng/L) to 85 ng/L; concentrations were less than 16 ng/L at all reference sites. The probability of exceeding the plant 10th centile for Irgarol (251 ng/L) was less than 0.6% for all marinas and 0.01% for all reference areas. These data suggest low ecological risk from Irgarol exposure for both marina and reference areas in the Carolinian Province. Irgarol concentrations ranged from 5 ng/L at the Severn River reference site to 1,816 ng/L in Port Annapolis marina during the two year study. Ecological risk from Irgarol exposure was high for the Port Annapolis marina sites based on a probability of exceeding the plant 10th centile. However, risk was low for Severn River and Severn River reference sites. Functional and structural measures of resident phytoplankton communities in the Back Creek and Severn River did not suggest that these target species are impaired in the Port Annapolis marina area where probabilistic analysis predicted adverse effects from Irgarol exposure.  相似文献   
143.
Numerical methods for the examination of multivariate soil samples are presented in geometric terms. Techniques of coordinate representation by principal components, by nonmetric scaling, and by a new method are discussed, as are techniques for agglomerative hierarchic cluster analysis. These are illustrated by two sets of previously published data.  相似文献   
144.
145.
The first observations of equatorial ionospheric emissions in the 800–1050 Å spectral region have been made from the STP 72-1 satellite. Analysis of these data and comparison with data taken simultaneously in the 1220–1400 Å wavelength range indicate a strong correlation between these emissions, as well as a pronounced dependence on season and dip latitude. Both nadir data and spin data are presented, and analyses of spin data indicate latitudinal variations of the F2 peak altitude. Theoretical calculations of emission in the 800–1050 Å spectral region show that the data are consistent with radiative recombination of O+ as a source of the observed emissions.  相似文献   
146.
Ten to 100 meV protons from the solar flare of March 24, 1966 were observed on the University of California scintillation counter on OGO-I. The short rise and decay times observed in the count rates of the 32 channels of pulse-height analysis show that scattering of the protons by the interplanetary field was much less important in this event than in previously observed proton flares. A diffusion theory in which D = M r is found to be inadequate to account for the time behavior of the count rates of this event. Small fluctuations of the otherwise smooth decay phase may be due to flare protons reflected from the back of a shock front, which passed the earth on March 23.  相似文献   
147.
148.
The MESSENGER mission to Mercury, to be launched in 2004, will provide an opportunity to characterize Mercury's internal magnetic field during an orbital phase lasting one Earth year. To test the ability to determine the planetary dipole and higher-order moments from measurements by the spacecraft's fluxgate magnetometer, we simulate the observations along the spacecraft trajectory and recover the internal field characteristics from the simulated observations. The magnetic field inside Mercury's magnetosphere is assumed to consist of an intrinsic multipole component and an external contribution due to magnetospheric current systems described by a modified Tsyganenko 96 model. Under the axis-centered-dipole approximation without correction for the external field the moment strength is overestimated by ∼4% for a simulated dipole moment of , and the error depends strongly on the magnitude of the simulated moment, rising as the moment decreases. Correcting for the external field contributions can reduce the error in the dipole term to a lower limit of ∼1-2% without a solar wind monitor. Dipole and quadrupole terms, although highly correlated, are then distinguishable at the level equivalent to an error in the position of an offset dipole of a few tens of kilometers. Knowledge of the external magnetic field is therefore the primary limiting factor in extracting reliable knowledge of the structure of Mercury's magnetic field from the MESSENGER observations.  相似文献   
149.
Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation.  相似文献   
150.
Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5?cal?ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22?m water depth. The basal unit contains macrofossils dating to 25?C21?cal?ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6?km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5?cal?ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the ??13C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric CO2 source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550?°C) increased substantially and permanently, from 10 to 30?%, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in ??13C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5?cal?ka, Alnus pollen tripled (25?C75?%), followed by the near-tripling of BSi (7?C19?%) by 8.2?cal?ka, and ??15N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000?years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号