首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   2篇
  国内免费   2篇
测绘学   4篇
大气科学   10篇
地球物理   26篇
地质学   44篇
海洋学   7篇
天文学   7篇
综合类   1篇
自然地理   12篇
  2023年   1篇
  2021年   4篇
  2020年   4篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2003年   4篇
  2002年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1982年   2篇
  1978年   1篇
  1955年   1篇
排序方式: 共有111条查询结果,搜索用时 314 毫秒
31.
An experimental facility has been developed to investigate magma-water interaction (MWI). The facility operates in a high-pressure and high-temperature environment, with temperatures up to 1,200°C and pressures up to 200 MPa. Cylindrical sample-holders (20 by 180 mm in size) are heated conductively to yield a three phase (melt, crystals and gas) system, and then water (or other fluid) is injected into the sample through a capillary tube (diameter 0.5 mm, length ca. 1,000 mm) under controlled conditions. Pressure, volume and temperature changes are continuously recorded during every phase of the experiments. To test this facility, MWI is studied at subliquidus temperatures (800 and 900°C) and pressure (8 MPa), using a leucite tephrite sample with two different initial grain sizes. Because of the grain-size dependence of sintering, the two starting materials produce magmas with different textures at the same temperature: porous magma for large initial grain sizes and dense magma for small initial grain sizes. In these experiments 1.5 g of water at room temperature is injected into 6.0 g of partially molten sample at velocities ranging from 1 to 3 m/s. We find that the extent of fragmentation and transport caused by MWI are mainly controlled by the texture of the interacting sample with explosive interaction occurring only for porous magmas.  相似文献   
32.
33.
Journal of Oceanology and Limnology - Magnetotactic bacteria (MTB), ubiquitous in soil and fresh and saltwater sources have been identified in the microbiome of humans and many animals. MTB...  相似文献   
34.
Along the northeast Greenland continental margin, bedrock on interfjord plateaus is highly weathered, whereas rock surfaces in fjord troughs are characterized by glacial scour. Based on the intense bedrock weathering and lack of glacial deposits from the last glaciation, interfjord plateaus have long been thought to be ice-free throughout the last glacial maximum (LGM). In recent years there is growing evidence from shelf and fjord settings that the northeast Greenland continental margin was more extensively glaciated during the LGM than previously thought. However, little is still known from interfjord settings. We present cosmogenic 10Be data from meltwater channels and weathered sandstone outcrops on Jameson Land, an interfjord highland north of Scoresby Sund. The mean exposure age of samples from channel beds (n = 3) constrains on the onset of deglaciation on interior Jameson Land to 18.5 ± 1.3–21.4 ± 1.9 ka (for erosion conditions of 0–10 mm/ka, respectively). This finding adds to growing evidence that the northeast Greenland continental margin was more heavily glaciated during the LGM than previously thought.  相似文献   
35.
The Bacaba iron oxide–copper–gold deposit, situated within a WNW–ESE-striking shear zone in the Carajás Domain, Carajás Mineral Province, is hosted by the Serra Dourada Granite, the Bacaba Tonalite, and crosscutting gabbro intrusions, which were intensely affected by sodic (albite–scapolite), potassic, chloritic, and hydrolytic hydrothermal alteration. This deposit is located 7 km northeast of the world-class Sossego iron oxide–copper–gold deposit and might represent a distal and deeper portion of the same or related hydrothermal system. The U–Pb laser ablation inductively coupled plasma–mass spectrometry data for zircon from a sodically altered sample of the Serra Dourada Granite yielded a 2,860±22 Ma (MSWD=11.5) age. Three samples from the Bacaba Tonalite, including one with potassic alteration and two with Cu–Au mineralization, rendered the 3,001.2±3.6 Ma (MSWD=1.8), 2,990.9±5.8 Ma (MSWD=1.9), and 3,004.6±9 Ma (MSWD=2.2) ages, respectively. The ca. 2.86 and ca. 3.0 Ga ages are interpreted as the timing of the igneous crystallization of the Serra Dourada Granite and the Bacaba Tonalite, respectively, and represent the oldest magmatic events recognized in the Carajás Domain. The Serra Dourada Granite and the Bacaba Tonalite are interpreted to greatly predate the genesis of the Bacaba deposit. A genetic link is improbable in the light of the similarities with the Sossego deposit, which is also hosted by younger ca. 2.76 Ga metavolcano-sedimentary units of the Itacaiúnas Supergroup. In this context, the iron oxide–copper–gold deposits in the southern sector of the Carajás Domain could be mainly controlled by important crustal discontinuities, such as a regional shear zone, rather than be associated with a particular rock type. These results expand the potential for occurrences of iron oxide–copper–gold deposits within the Mesoarchean basement rocks underlying the Carajás Basin, particularly those crosscut by Neoarchean shear zones.  相似文献   
36.
We investigated zooplankton distribution in September 2006/2007 at eight stations across Fram Strait in contrasting water masses ranging from cold Polar water to warm Atlantic water. Our main objectives were: (1) to describe the plankton community in the upper 200 m during autumn, and (2) to investigate the importance of small-sized copepods and protozooplankton in an arctic ecosystem when the majority of the large Calanus species had entered diapause. We sampled both with a WP-2 net and Go-Flo bottle and show that small copepods <1 mm are significantly undersampled using a WP-2 net with 90 μm mesh.Small copepods and protozooplankton made a significant contribution both in terms of abundance and total zooplankton biomass at all stations in September, when the large calanoid copepods had left the upper 200 m. The dominating group in the upper 60 m at all stations was Oithona spp. nauplii and their daily estimated grazing potential on the <10 μm phytoplankton ranged from 0.1% to 82% of the standing stock. Both Oithona copepodites and nauplii biomass showed a significantly positive relation with temperature, but not with potential food. Heterotrophic protozooplankton, on the other hand, were most likely bottom-up regulated by the availability of phytoplankton <10 μm. We hypothesise that Oithona nauplii and protozooplankton compete for food and conclude that there was a strong link between the zooplankton community and the microbial food web in Fram Strait.  相似文献   
37.
Snow cornices grow extensively on leeward edges of plateau mountains in central Svalbard. A dominant wind direction, a snowdrift source area and a sharp slope transition largely control the formation of snow cornices in a barren peri‐glacial landscape. Seasonal snow cornice dynamics control bedrock weathering and erosion in sedimentary bedrock on the Gruvefjellet plateau edge in the valley Longyeardalen. Air, snow and ground temperature sensors, as well as automatic time‐lapse cameras on a leeward facing plateau edge were used to study seasonal cornice dynamics. These techniques allowed for monitoring of cornice accretion, deformation and collapse/melting in great detail. The active layer of the top plateau edge is characterized by high moisture content due to rain before freeze‐up in autumn and cornice meltdown during spring thaw. Thus frost weathering there can be very efficient in this otherwise cold and dry environment. Within the first autumn snowstorms, a vertical fully developed cornice was in place (190 cm thick). The backwall surface beneath the thickest part of the cornice remained in the ice segregation ‘frost cracking window’ for almost nine months. Highly weathered rock material from the plateau edge is thus incorporated into the cornice during cornice accretion. Brittle snow deformation leads to the opening of cornice tension cracks between the cornice mass and the snowpack on the plateau. These cracks are a prerequisite for cornice collapses, and often trigger cornice fall avalanches on the slope beneath. In these open cornice tension cracks, weathered rock debris, plucked from the plateau edge, can be visible, demonstrating the erosional property of the cornices. The cornice will either collapse or melt, resulting in suspended sediment transport downslope by cornice fall avalanche or release as rock fall respectively. Therefore, cornices both promote and trigger high weathering rates on Gruvefjellet, and thus control presently the development of the rockwall free faces and the talus cones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
38.
Previous studies showed that 85 % of total organic matter (TOM) in digested sewage sludge (biosolids) used as a sealing layer material over sulfide tailings at the Kristineberg Mine, northern Sweden, had been degraded 8 years after application, resulting in a TOM reduction from 78 to 14 %. To achieve a better understanding of the field observations, laboratory studies were performed to evaluate biodegradation rates of the TOM under anaerobic conditions. Results reveal that the original biosolid consisted of ca. 60 % TOM (48.0 % lignin and 11.8 % carbohydrates) that had not been fully degraded. The incubation experiments proved that 27.8 % TOM in the biosolid was further degraded anaerobically at 20–22 °C during the 230 days’ incubation period, and that a plateau to the biodegradation rate was approached. Based on model results, the degradation constant was found to be 0.0125 (day?1). The calculated theoretical gas formation potential was ca. 50 % higher than the modeled results based on the average degradation rate. Cumulated H2S equated to 0.65 μmoL g?1 of biosolid at 230 days. However, the large sulfurous compounds reservoir (1.76 g SO4 2? kg?1 biosolid) together with anaerobic conditions can generate high concentrations of this gas over a long-term perspective. Due to the rate of biodegradability identified via anaerobic processes, the function of the biosolid to serve as an effective barrier to inhibit oxygen migration to underlying tailings, may decrease over time. However, a lack of readily degradable organic fractions in the biosolid and a large fraction of organic matter that was recalcitrant to degradation suggest a longer degradation duration, which would prolong the biosolid material’s function and integrity.  相似文献   
39.
A regional scale, showcase saline aquifer CO2 storage model from the North German Basin is presented, predicting the regional pressure impact of a small industrial scale CO2 storage operation on its surroundings. The intention of the model is to bridge the gap between generic and site-specific, studying the role of fluid flow boundary conditions and petrophysical parameters typically found in the North German Basin. The numerical simulation has been carried out using two different numerical simulators, whose results matched well. The most important system parameters proved to be the model’s hydrological boundary conditions, rock compressibility, and permeability. In open boundary aquifers, injection-induced overpressures dissipate back to hydrostatic level within a few years. If a geological flow barrier is present on at least one side of the aquifer, pressure dissipation is seriously retarded. In fully closed compartments, overpressures can never fully dissipate, but equilibrate to a compartment-wide remnant overpressure. At greater distances to the injection well, maximum fluid pressures are in the range of a few bar only, and reached several years to decades after the end of the actual injection period. This is important in terms of long-term safety and monitoring considerations. Regional pressure increase impacts the storage capacities of neighbouring sites within hydraulically connected units. It can be concluded that storage capacities may be seriously over- or underestimated when the focus is on a single individual storage site. It is thus necessary to assess the joint storage capacities and pressure limitations of potential sites within the same hydraulic unit.  相似文献   
40.
The Alvo 118 iron oxide–copper–gold (IOCG) deposit (170 Mt at 1.0 wt.% Cu, 0.3 g/t Au) lies in the southern sector of the Itacaúnas Shear Belt, Carajás Mineral Province, along a WNW–ESE-striking, 60-km-long shear zone, close to the contact of the ~2.76-Ga metavolcano-sedimentary Itacaiúnas Supergroup and the basement (~3.0 Ga Xingu Complex). The Alvo 118 deposit is hosted by mafic and felsic metavolcanic rocks and crosscutting granitoid and gabbro intrusions that have been subjected to the following hydrothermal alteration sequence towards the ore zones: (1) poorly developed sodic alteration (albite and scapolite); (2) potassic alteration (biotite or K-feldspar) accompanied by magnetite formation and silicification; (3) widespread, pervasive chlorite alteration spatially associated with quartz–carbonate–sulphide infill ore breccia and vein stockworks; and (4) local post-ore quartz–sericite alteration. The ore assemblage is dominated by chalcopyrite (~60%), bornite (~10%), hematite (~20%), magnetite (10%) and subordinate chalcocite, native gold, Au–Ag tellurides, galena, cassiterite, F-rich apatite, xenotime, monazite, britholite-(Y) and a gadolinite-group mineral. Fluid inclusion studies in quartz point to a fluid regime composed of two distinct fluid types that may have probably coexisted within the timeframe of the Cu–Au mineralizing episode: a hot (>200°C) saline (32.8‰ to 40.6 wt.% NaCl eq.) solution, represented by salt-bearing aqueous inclusions, and a lower temperature (<200°C), low to intermediate salinity (<15 wt.% NaCl eq.) aqueous fluid defined by two-phase (LH2O + VH2O) fluid inclusions. This trend is very similar to those defined for other IOCG systems of the Carajás Mineral Province. δ 18OH2O values in equilibrium with calcite (−1.0‰ to 7.5‰ at 277°C to 344°C) overlap the lower range for primary magmatic waters, but the more 18O-depleted values also point to the involvement of externally derived fluids, possibly of meteoric origin. Furthermore, sulphide δ 34S values (5.1‰ to 6.3‰), together with available boron isotope and Cl/Br–Na/Cl data provide evidence for a significant component of residual evaporative fluids (e.g., bittern fluids generated by seawater evaporation) in this scenario that, together with magma-derived brines, would be the main sources of the highly saline fluids involved in the formation Alvo 118 IOCG deposit. The restricted high temperature sodic alteration, the pervasive overprinting of the potassic alteration minerals by chlorite proximal to the ore zones, ore breccias with open-space filling textures in brittle structures, microthermometric and stable isotope data indicate, collectively, that the Alvo 118 IOCG system developed at structurally high levels and may be considered the shallower representative of the IOCG systems of the CMP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号