首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   25篇
  国内免费   3篇
测绘学   13篇
大气科学   40篇
地球物理   71篇
地质学   134篇
海洋学   16篇
天文学   95篇
自然地理   10篇
  2022年   1篇
  2021年   8篇
  2020年   1篇
  2019年   2篇
  2018年   16篇
  2017年   13篇
  2016年   24篇
  2015年   8篇
  2014年   16篇
  2013年   17篇
  2012年   18篇
  2011年   23篇
  2010年   33篇
  2009年   26篇
  2008年   20篇
  2007年   23篇
  2006年   13篇
  2005年   19篇
  2004年   24篇
  2003年   13篇
  2002年   12篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1993年   5篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1985年   2篇
  1984年   1篇
排序方式: 共有379条查询结果,搜索用时 62 毫秒
71.
72.
73.
During geothermal reservoir development, drilling deep boreholes turns out to be extremely expensive and risky. Thus, it is of great importance to work out the details of suitable borehole locations in advance. Here, given a set of existing boreholes, we demonstrate how a sophisticated numerical technique called optimal experimental design helps to find a location of an additional exploratory borehole that reduces risk and, ultimately, saves cost. More precisely, the approach minimizes the uncertainty when deducing the effective permeability of a buried reservoir layer from a temperature profile measured in this exploratory borehole. In this paper, we (1) outline the mathematical formulation in terms of an optimization problem, (2) describe the numerical implementation involving various software components, and (3) apply the method to a 3D numerical simulation model representing a real geothermal reservoir in northern Italy. Our results show that optimal experimental design is conceptually and computationally feasible for industrial-scale applications. For the particular reservoir and the estimation of permeability from temperature, the optimal location of the additional borehole coincides with regions of high flow rates and large deviations from the mean temperature of the reservoir layer in question. Finally, the presentation shows that, methodologically, the optimization method can be generalized from estimating permeability to finding any other reservoir properties.  相似文献   
74.
ARIEL, the Atmospheric Remote sensing Infrared Exoplanet Large survey, is one of the three M-class mission candidates competing for the M4 launch slot within the Cosmic Vision science programme of the European Space Agency (ESA). As such, ARIEL has been the subject of a Phase A study that involved European industry, research institutes and universities from ESA member states. This study is now completed and the M4 down-selection is expected to be concluded in November 2017. ARIEL is a concept for a dedicated mission to measure the chemical composition and structure of hundreds of exoplanet atmospheres using the technique of transit spectroscopy. ARIEL targets extend from gas giants (Jupiter or Neptune-like) to super-Earths in the very hot to warm zones of F to M-type host stars, opening up the way to large-scale, comparative planetology that would place our own Solar System in the context of other planetary systems in the Milky Way. A technical and programmatic review of the ARIEL mission was performed between February and May 2017, with the objective of assessing the readiness of the mission to progress to the Phase B1 study. No critical issues were identified and the mission was deemed technically feasible within the M4 programmatic boundary conditions. In this paper we give an overview of the final mission concept for ARIEL as of the end of the Phase A study, from scientific, technical and operational perspectives.  相似文献   
75.
We describe the implementation of the PhotoZ code in the framework of the Astro-WISE package and as part of the Photometric Classification Server of the PanSTARRS pipeline. Both systems allow the automatic measurement of photometric redshifts for the millions of objects being observed in the PanSTARRS project or expected to be observed by future surveys like KIDS, DES or EUCLID.  相似文献   
76.
77.
The Eastern Mediterranean Levant Basin is a proven hydrocarbon province with recent major gas discoveries. To date, no exploration wells targeted its northern part, in particular the Lebanese offshore. The present study assesses the tectono‐stratigraphic evolution and related petroleum systems of the northern Levant Basin via an integrated approach that combines stratigraphic forward modeling and petroleum systems/basin modeling based on the previous published work. Stratigraphic modeling results provide a best‐fit realisation of the basin‐scale sedimentary filling, from the post‐rift Upper Jurassic until the Pliocene. Simulation results suggest dominant eastern marginal and Arabian Plate sources for Cenozoic siliciclastic sediments and a significant contribution from the southern Nilotic source mostly from Lower Oligocene to Lower Miocene. Basin modeling results suggest the presence of a working thermogenic petroleum system with mature source rocks localised in the deeper offshore. The generated hydrocarbons migrated through the deep basin within Jurassic and Cretaceous permeable layers towards the Latakia Ridge in the north and the Levant margin and offshore topographic highs. Furthermore, the basin model indicates a possibly significant influence of salt deposition during Messinian salinity crisis on formation fluids. Ultimately, the proposed integrated workflow provides a powerful tool for the assessment of petroleum systems in underexplored areas.  相似文献   
78.
Clar  Christoph  Löschner  Lukas  Nordbeck  Ralf  Fischer  Tatjana  Thaler  Thomas 《Natural Hazards》2021,105(2):1765-1796
Natural Hazards - This contribution explores the conceptual and empirical linkages between population dynamics and natural hazard risk management (NHRM). Following a review of the international...  相似文献   
79.
The paper presents an approach towards a medium-term (decades) modelling of water levels and currents in a shallow tidal sea by means of combined hydrodynamic and neural network models. The two-dimensional version of the hydrodynamic model Delft3D, forced with realistic water level and wind fields, is used to produce a two-year-database of water levels and currents in the study area. The linear principal component analysis (PCA) of the results is performed to reveal dominating spatial patterns in the analyzed dataset and to significantly reduce the dimensionality of the data. It is shown that only a few principal components (PCs) are necessary to reconstruct the data with high accuracy (over 95% of the original variance). Feed-forward neural networks are set up and trained to effectively simulate the leading PCs based on water level and wind speed and direction time series in a single, arbitrarily chosen point in the study area. Assuming that the spatial modes resulting from the PCA are ‘universally’ applicable to the data from time periods not modelled with Delft3D, the trained neural networks can be used to very effectively and reliably simulate temporal and spatial variability of water levels and currents in the study area. The approach is shown to be able to accurately reproduce statistical distribution of water levels and currents in various locations inside the study area and thus can be viewed as a reliable complementary tool e.g., for computationally expensive hydrodynamic modelling. Finally, a detailed analysis of the leading PCs is performed to estimate the role of tidal forcing and wind (including its seasonal and annual variability) in shaping the water level and current climate in the study area.  相似文献   
80.
Storm-related sea level variations 1958–2002 along the North Sea coast from a high-resolution numerical hindcast are investigated and compared to the results of earlier studies. Considerable variations were found from year to year and over the entire period. The large-scale pattern of these variations is consistent with that derived from previous studies, while the magnitudes of the long-term trends differ. The latter is attributed to different analysis periods, improvements in the atmospheric forcing, and the enhanced spatial resolution of the numerical simulation. It is shown that the different analysis periods, in particular, represent an issue as the increase in storm-related sea levels was found to be weaker over the last few years that have not been included in earlier studies. These changes are consistent with observed changes of the storm climate over the North Sea. It is also shown that observed and hindcast trends may differ significantly. While the latter are in agreement with observed changes in the storm climate, it may be concluded that observed sea level changes along the North Sea coast comprise a considerable fraction that cannot be attributed to changes in the large-scale atmospheric circulation.
Ralf WeisseEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号