首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   8篇
  国内免费   1篇
测绘学   4篇
大气科学   9篇
地球物理   35篇
地质学   87篇
海洋学   22篇
天文学   49篇
综合类   1篇
自然地理   7篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   7篇
  2014年   15篇
  2013年   14篇
  2012年   8篇
  2011年   10篇
  2010年   16篇
  2009年   16篇
  2008年   10篇
  2007年   13篇
  2006年   5篇
  2005年   9篇
  2004年   4篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
排序方式: 共有214条查询结果,搜索用时 62 毫秒
211.
In porous aquifers, groundwater flow and solute transport strongly depend on the sedimentary facies distribution at fine scale, which determines the heterogeneity of the conductivity field; in particular, connected permeable sediments could form preferential flow paths. Therefore, properly defined statistics, e.g. total and intrinsic facies connectivity, should be correlated with transport features. In order to improve the assessment of the relevance of this relationship, some tests are conducted on two ensembles of equiprobable realizations, obtained with two different geostatistical simulation methods—sequential indicator simulation and multiple point simulation (MPS)—from the same dataset, which refers to an aquifer analogue of sediments deposited in a fluvial point-bar/channel association. The ensembles show different features; simulations with MPS are more structured and characterised by preferential flow paths. This is confirmed by the analysis of transport connectivities and by the interpretation of data from numerical experiments of conservative solute transport with single and dual domain models. The use of two ensembles permits (1) previous results obtained for single realizations to be consolidated on a more firm statistical basis and (2) the application of principal component analysis to assess which quantities are statistically the most relevant for the relationship between connectivity indicators and flow and transport properties.  相似文献   
212.
This paper describes the numerical simulation of two dynamic centrifuge tests on reduced scale models of shallow tunnels in dry sand, carried out using both an advanced bounding surface plasticity constitutive soil model and a simple Mohr–Coulomb elastic-perfectly plastic model with embedded nonlinear and hysteretic behaviour. The predictive capabilities of the two constitutive models are assessed by comparing numerical predictions and experimental data in terms of accelerations at several positions in the model, and bending moment and hoop forces in the lining. Computed and recorded accelerations match well, and a quite good agreement is achieved also in terms of dynamic bending moments in the lining, while numerical and experimental values of the hoop force differ significantly with one another. The influence of the contact assumption between the tunnel and the soil is investigated by comparing the experimental data and the numerical results obtained with different interface conditions with the analytical solutions. The overall performance of the two models is very similar indicating that at least for dry sand, where shear-volumetric coupling is less relevant, even a simple model can provide an adequate representation of soil behaviour under dynamic conditions.  相似文献   
213.
During its 1800-year-long persistent activity the Stromboli volcano has erupted a highly porphyritic (HP) volatile-poor scoriaceous magma and a low porphyritic (LP) volatile-rich pumiceous magma. The HP magma is erupted during normal Strombolian explosions and lava effusions, while the LP one is related to more energetic paroxysms. During the March–April 2003 explosive activity, Stromboli ejected two typologies of juvenile glassy ashes, namely highly vesicular LP shards and volatile-poor HP shards. Their textural and in situ chemical characteristics are used to unravel mutual relationships between HP and LP magmas, as well as magma dynamics within the shallow plumbing system. The mantle-normalized trace element patterns of both ash types show the typical arc-lava pattern; however, HP glasses possess incompatible element concentrations higher than LP glasses, along with Sr and Eu negative anomalies. HP shards are generally characterized by higher Li contents (to ~20 ppm) and lower δ7Li values (+1.2 to −3.8‰) with respect to LP shards (Li contents of 7–14 ppm and δ7Li ranging between +4.6 and +0.9‰). Fractional crystallization models based on major and trace element compositions, combined with a degassing model based on open-system Rayleigh distillation and on the assumption that melt/fluidDLi > 1, show that abundant (~30%) plagioclase precipitation and variable degrees of degassing can lead the more primitive LP magma to evolve toward a differentiated (isotopically lighter) HP magma ponding in the upper conduit and undergoing slow continuous degassing-induced crystallization. This study also evidences that in March 2003 Stromboli volcano poured out a small early volume of LP magma that traveled slower within the conduit with respect to later and larger volumes of fast ascending LP magma erupted during the April 5 paroxysm. The different ascent rates and cooling rates of the two LP magma batches (i.e., pre- and post-paroxysm) resulted in small, but detectable, differences in their chemical signatures. Finally, this study highlights the high potential of in situ investigations of juvenile glassy ashes in petrologic and geochemical monitoring the volcanic activity and of Li isotopes as tracers of degassing processes within the shallow plumbing system.  相似文献   
214.
Water samples from cold and geothermal boreholes, hot springs, lakes and rivers were analyzed for δD, δ18O and 87Sr/86Sr compositions in order to investigate lake water–groundwater mixing processes, water–rock interactions, and to evaluate groundwater flow paths in the central Main Ethiopian Rift (MER) of the Ziway–Shala basin. Different ranges of isotopic values were recorded for different water types: hot springs show δ18O −3.36 to +3.69 and δD −15.85 to +24.23, deep Aluto-Langano geothermal wells show δ18O −4.65 to −1.24 and δD −12.39 to −9.31, groundwater wells show δ18O −3.99 to +5.14 and δD −19.69 to +32.27, whereas the lakes show δ18O and δD in the range +3.98 to +7.92 and +26.19 to +45.71, respectively. The intersection of the Local Meteoric Water Line (LMWL: δD = 7 δ18O + 11.2, R2 = 0.94, n = 42) and the Local Evaporation Line (LEL: δD = 5.63δ18O + 8, n = 14, R2 = 0.82) was used to estimate the average isotopic composition of recharge water into the basin (δD = −5.15 and δ18O = −2.34). These values are depleted if compared with the modern-day average precipitation, presumably indicating paleo-groundwater components recharged during previous humid climatic phases. The measured stable isotope values indicate that the geothermal wells, some of the hot springs and groundwater wells mainly consist of meteoric water. The Sr isotopic signatures in all waters are within the range of the Sr isotopic composition of the rift basalts and rhyolites. The variability of Sr isotopic data also pinpoints complex water–rock interaction and mixing processes in groundwater and surface water. The 87Sr/86Sr ratio ranges from 0.70445 to 0.70756 in the hot springs, from 0.70426 to 0.70537 in two deep geothermal wells, and from 0.70673 to 0.70721 in the rift lakes Ziway, Langano, Shala and Awasa. The radiogenic composition recorded by the lakes indicates that the input water was predominantly affected by progressive interaction with rhyolitic volcanics and lacustrine sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号