首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4723篇
  免费   155篇
  国内免费   53篇
测绘学   108篇
大气科学   415篇
地球物理   982篇
地质学   1570篇
海洋学   427篇
天文学   894篇
综合类   11篇
自然地理   524篇
  2021年   48篇
  2020年   56篇
  2019年   72篇
  2018年   77篇
  2017年   80篇
  2016年   103篇
  2015年   115篇
  2014年   109篇
  2013年   252篇
  2012年   149篇
  2011年   227篇
  2010年   191篇
  2009年   272篇
  2008年   196篇
  2007年   181篇
  2006年   169篇
  2005年   158篇
  2004年   170篇
  2003年   166篇
  2002年   158篇
  2001年   97篇
  2000年   102篇
  1999年   98篇
  1998年   94篇
  1997年   59篇
  1996年   74篇
  1995年   63篇
  1994年   59篇
  1993年   58篇
  1992年   52篇
  1991年   68篇
  1990年   54篇
  1989年   52篇
  1988年   43篇
  1987年   67篇
  1986年   47篇
  1985年   61篇
  1984年   79篇
  1983年   59篇
  1982年   54篇
  1981年   70篇
  1980年   60篇
  1979年   50篇
  1978年   67篇
  1977年   48篇
  1976年   55篇
  1975年   36篇
  1974年   39篇
  1973年   36篇
  1971年   38篇
排序方式: 共有4931条查询结果,搜索用时 31 毫秒
951.
Sulfur biogeochemical cycling and associated Fe-S mineralization processes exert a major influence over acidity dynamics, electron flow and contaminant mobility in wetlands, benthic sediments and groundwater systems. While S biogeochemical cycling has been studied intensively in many environmental settings, relatively little direct information exists on S cycling in formerly drained wetlands that have been remediated via tidal re-flooding. This study focuses on a tidal wetland that was drained in the 1970s (causing severe soil and water acidification), and subsequently remediated by controlled re-flooding in 2002. We examine reduction rates and Fe-S mineralization at the tidal fringe, 7 years after the commencement of re-flooding. The initial drainage of the wetland examined here caused in-situ pyrite (FeS2) oxidation, resulting in the drained soil layers being highly acidic and rich in -bearing Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6). Tidal re-flooding has neutralized much of the previous acidity, with the pore-water pH now mostly spanning pH 5-7. The fastest rates of in-situ reduction (up to ∼300 nmol cm−3 day−1) occur within the inter-tidal zone in the near-surface soil layers (to ∼60 cm below ground surface). The reduction rates correlate with pore-water dissolved organic C concentrations, thereby suggesting that electron donor supply was the predominant rate determining factor. Elemental S was a major short-term product of reduction, comprising up to 69% of reduced inorganic S in the near-surface soil layers. This enrichment in elemental S can be partly attributed to interactions between biogenic H2S and jarosite - a process that also contributed to enrichment in pore-water Fe2+ (up to 55 mM) and (up to 50 mM). The iron sulfide thiospinel, greigite (Fe3S4), was abundant in near-surface soil layers within the inter- to sub-tidal zone where tidal water level fluctuations created oscillatory redox conditions. There was evidence for relatively rapid pyrite re-formation within the re-flooded soil layers. However, the results indicate that pyrite re-formation has occurred mainly in the lower formerly drained soil layers, whereas the accumulation of elemental S and greigite has been confined towards the soil surface. The discovery that pyrite formation was spatially decoupled from that of elemental S and greigite challenges the concept that greigite is an essential precursor required for sedimentary pyrite formation. In fact, the results suggest that greigite and pyrite may represent distinct end-points of divergent Fe-S mineralization pathways. Overall, this study highlights novel aspects of Fe-S mineralization within tidal wetlands that have been drained and re-flooded, in contrast to normal, undisturbed tidal wetlands. As such, the long-term biogeochemical trajectory of drained and acidified wetlands that are remediated by tidal re-flooding cannot be predicted from the well-studied behaviour of normal tidal wetlands.  相似文献   
952.
Atmospheric composition is a key control on climate and the habitability of planetary surfaces. Ablation of infalling micrometeorites has been recognised as one way in which atmospheric chemistry can be changed, especially at times in solar system history when the infall rates of exogenous material were high. Despite its potential to influence climate and habitability, extraterrestrial sulphur dioxide is currently an unquantified contribution to the atmospheres of the terrestrial planets. We have used flash pyrolysis to simulate the atmospheric entry of micrometeorites and Fourier-transform infrared spectroscopy to identify and quantify the sulphur dioxide produced from the carbonaceous meteorites Orgueil (CI1), ALH 88045 (CM1), Cold Bokkeveld (CM2), Murchison (CM2) and Mokoia (CV3). We have used this approach to understand the introduction of sulphur dioxide to the atmospheres of Earth and Mars from infalling micrometeorites. Sulphates, present in carbonaceous chondrites at a few wt.%, are resistant to thermal decomposition, limiting the yields of sulphur dioxide from unmelted micrometeorites. Infalling micrometeorites are a minor source of present-day sulphur dioxide on Earth and Mars, calculated to be up to around 2400 tonnes and about 350 tonnes, respectively. During the Late Heavy Bombardment (LHB), the much greater infall rates of micrometeoritic dust are calculated to be associated with average production rates of sulphur dioxide of around 20 Mt yr−1 for the early Earth and 0.5 Mt yr−1 for early Mars, for a LHB of 100 Myr. These rates of delivery of sulphur dioxide at high altitudes would have reduced the solar energy reaching the surfaces of these planets, via scattering of sunlight by stratospheric sulphate aerosols, and may have had detrimental effects on developing biospheres by promoting cooler climates and reducing the probability of liquid water on planetary surfaces.  相似文献   
953.
Injection of carbon dioxide into coal seams is considered to be a potential method for its sequestration away from the atmosphere. However, water present in coals may retard injection: especially if carbon dioxide does not wet the coal as well as water. Thus contact angles in the coal-water-CO2 system were measured using CO2 bubbles in water/coal systems at 40 °C and pressures up to 15 MPa using five bituminous coals. At low pressures, in this CO2/water/coal system, receding contact angles for the coals ranged between 80° to 100°; except for one coal that had both high ash yield and low rank, with a contact angle of 115°, indicating that it was hydrophilic. With increasing pressure, the receding contact angles for the different coals decreased, indicating that they became more CO2-wetting. The relationship between contact angle and pressure was approximately linear. For low ash or high rank coals, at high pressure the contact angle was reduced to 30-50°, indicating the coals became strongly CO2-wetting; that is CO2 fluids will spontaneously penetrate these wet coals. In the case of the coal that was both high ash and hydrophilic, the contact angle did not drop to 90° even at the highest pressures used. These results suggest that CO2 will not be efficiently adsorbed by all wet coals equally well, even at high pressure. It was found that at high pressures (> 2 MPa) the rate of penetration of carbon dioxide into the coals increased rapidly with decreasing contact angle, independently of pressure. Injecting CO2 into wet coals that have both low rank and high ash will not trap CO2 as well as injecting it into high rank or low ash coals.  相似文献   
954.
Calcite was synthesized by four methods, and the luminescence decay-time was measured for nine samples before and after heating hydrothermally in the temperature range 200–400°C. Decay-time data were collected between room temperature and approximately 15 K. The decay time at room temperature is approximately 50 ms, with little difference between a given calcite before and after hydrothermal treatment. The decay time at 15 K is always greater than at room temperature as the effect of thermal quenching diminishes. Differences in decay time before and after heating are more apparent at low temperature owing to this reduction in thermal quenching. The decay time decreased significantly in two samples, and an increase in decay time was observed in the remaining seven samples following heating. Among the latter group, the change in decay time was insignificant in three samples. The results are compared with previous data in which it was shown that the effect of heating is to increase the intensity of luminescence.  相似文献   
955.
Fluvial dissolved Fe concentrations decrease upon mixing with seawater, resulting in the formation of Fe-floccules. However, a clear understanding of the fate of these floccules has yet to be established. Assessing how tidal processes affect the formation of Fe-colloids in the Leirárvogur estuary, SW Iceland, is an important step in understanding the formation and potential deposition of estuarine Fe-rich minerals within this estuarine system. The Leirárvogur estuary drains predominately Fe-rich basalt, increasing the likelihood of detecting changes in Fe-phases. Fluvial waters and local lake waters that drain into the estuary were compared and the effects of seasonal changes were considered, in an attempt to understand how varying end-members and external factors play a role in Fe-rich mineral formation. Aqueous and colloidal Fe concentrations were found to be greater towards the head of the Leirárvogur estuary, suggesting that potential Fe-rich minerals and complexes are forming at sites of fluvial input. Increasing suspended colloidal Fe towards the estuary mouth suggests that Fe-colloids are readily transported seaward.  相似文献   
956.
Whole-rock 87Sr/86Sr and δ18O analyses of volcanic rocks and 3He/4He analyses of sulphides and sulphates from mineralized rocks on Wetar, Indonesia indicate a variable contribution of assimilated crustal material or sediment sourced from the subducted Australian craton to the south. These new data support the idea of progressive source contamination with precisely dated events showing that Wetar Island hosts the most extreme examples of crustal assimilation in the region. The increased continental contamination occurs during the Pliocene (Zanclian to Piacenzian) during distinct magmatic events between 5 and 4 Ma, and at 2.4 Ma when 87Sr/86Sr ratios in unaltered lavas, with whole-rock δ18O values between 5.7 and 9.6‰, increase from 0.707484 to extreme radiogenic values of 0.711656.The earlier of these magmatic events is important in the generation of the hydrothermal systems responsible for the mineralization recorded on Wetar. Samples from this yield radiogenic 3He/4He ratios between 0.5 and 1.4 R/RA, similar to the data from volcanic rocks on nearby Romang. The later magmatic event coincides with the arrival of the Australian Continental Margin at the subduction zone along the Banda arc. Progressive incorporation of continental-sourced components into the source region below the Wetar Island edifice coincides with the formation of gold-rich volcanogenic massive sulphide deposits hosted within the contaminated volcanic pile.  相似文献   
957.
Various marbles from both historic quarries and historical artefacts of the Czech Republic were examined in order to make determinations of their provenance. The methodology used was based upon a combination of petrographic image analysis (PIA) of thin sections, stable isotope geochemistry of carbonates, and cathodoluminescence. Multivariate statistical methods (i.e. cluster analysis and discriminant analysis) confirmed the geoscientific relevance of the marble’s different characteristics with a high degree of consistency as well as the enhanced significance of stable C and O isotopes in correlation with the petrographic data. The qualitative cathodoluminescence data provided a useful additional tool to help recognise the fingerprinting of marbles with similar petrographic and/or geochemical characteristics.  相似文献   
958.
The dominant factors affecting the development of weathering forms on the Prav?ice Rock Arch (PRA) (Bohemian Switzerland National Park, Czech Republic) are discussed, based on the in situ monitoring of weathering forms, as well as on laboratory studies of materials taken from this site. The in situ monitoring shows the progressive development of distinct weathering forms (delamination of case-hardened rock surfaces, cyclic efflorescence, and granular disintegration of exposed weakly cemented rock mass) in specific portions of the PRA, whose location is controlled by lithology, jointing/local hydrodynamics, and exposure to climatic factors. From the analysis of efflorescence, the dominance of sulphates is evident; particularly of gypsum and alums. However, the synergistic effects of the several salt species (that also include minor nitrates and chlorides) upon the mechanical disintegration of sandstone can be expected.  相似文献   
959.
960.
Moored sediment traps were deployed from January 2004 through December 2007 at depths of 550 and 800 m in San Pedro Basin (SPB), CA (33°33.0′N, 118°26.5′W). Additionally, floating sediment traps were deployed at 100 and 200 m for periods of 12-24 h during spring 2005, fall 2007, and spring 2008. Average annual fluxes of mass, particulate organic carbon (POC), ??13Corg, particulate organic nitrogen (PON), ??15N-PON, biogenic silica (bSiO2), calcium carbonate (CaCO3), and detrital material (non-biogenic) were coupled with climate records and used to examine sedimentation patterns, vertical flux variability, and organic matter sources to this coastal region. Annual average flux values were determined by binning data by month and averaging the monthly averages. The average annual fluxes to 550 m were 516±42 mg/m2 d for mass (sdom of the monthly averages, n=117), 3.18±0.26 mmol C/m2 d for POC (n=111), 0.70±0.05 mmol/m2 d for CaCO3 (n=110), 1.31±0.21 mmol/m2 d for bSiO2 (n=115), and 0.35±0.03 mmol/m2 d for PON (n=111). Fluxes to 800 and to 550 m were similar, within 10%. Annual average values of ??13Corg at 550 m were −21.8±0.2‰ (n=108), and ??15N averages were 8.9±0.2‰ (n=95). The timing of both high and low flux particle collection was synchronous between the two traps. Given the frequency of trap cup rotation (4-11 days), this argues for particle settling rates ≥83 m/d for both high and low flux periods. The moored traps were deployed over one of the wettest (2004-2005, 74.6 cm rainfall) and driest (2006-2007, 6.6 cm) rain years on record. There was poor correlation (Pearson's correlation coefficient, 95% confidence interval) of detrital mass flux with: Corg/N ratio (r=0.10, p=0.16); ??15N (r=−0.19, p=0.02); and rainfall (r=0.5, p=0.43), suggesting that runoff does not immediately cause increases in particle fluxes 15 km offshore. ??13Corg values suggest that most POC falling to the basin floor is marine derived. Coherence between satellite-derived chlorophyll a records from the trap location (±9 km2 resolution) and SST data indicates that productivity and export occurs within a few days of upwelling and both of these parameters are reasonable predictors of POC export, with a time lag of a few days to 2 weeks (with no time lag—SeaWiFS chlorophyll a and POC flux, r=0.25, p=0.0014; chlorophyll a and bSiO2 flux, r=0.28, p=0.0002).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号