首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
大气科学   4篇
地球物理   19篇
地质学   24篇
海洋学   2篇
天文学   6篇
自然地理   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
41.
A versatile fluid–chemical monitoring unit has been developed in the framework of the geothermal research platform Groß Schönebeck, Germany. It enables selective online and in situ measurements of various physico-chemical parameters at different surface locations of a geothermal fluid loop. Sensors are provided for pressure, temperature, volumetric flow rate, density, pH-value, redox potential, oxygen content, and electrical conductivity. In addition, the apparatus features two fluid samplers to manually collect fluid under in situ conditions and ultimately analyze the solution composition. All devices are mounted on a rack allowing easy transfer of the apparatus to other geothermal plants. The maximum operating pressure and temperature of the unit are 15 bar and 150 °C, respectively. The scientific and technical purpose of the system is to monitor a compositional variability of the produced fluid and chemical processes potentially occurring within the plant. These may result from reactions between the fluid and the surrounding materials, e.g., corrosion. Also, mineral precipitation as a consequence of temperature and/or pressure decrease or oxygen contamination may occur. This information is of paramount importance as so induced reactions might lead to failure of plant components or may damage the geothermal reservoir upon fluid reinjection and thus decrease injectivity.  相似文献   
42.
The organic–inorganic nature of organic-rich source rocks poses several challenges for the development of functional relations that link mechanical properties with geochemical composition. With this focus in mind, we herein propose a method that enables chemo-mechanical characterization of this highly heterogeneous source rock at the micron and submicron length scale through a statistical analysis of a large array of energy-dispersive X-ray spectroscopy (EDX) data coupled with nanoindentation data. The ability to include elemental composition to the indentation probe via EDX is shown to provide a means to identify pure material phases, mixture phases, and interfaces between different phases. Employed over a large array, the statistical clustering of this set of chemo-mechanical data provides access to the properties of the fundamental building blocks of clay-dominated organic-rich source rocks. The versatility of the approach is illustrated through the application to a large number of source rocks of different origin, chemical composition, and organic content. We find that the identified properties exhibit a unique scaling relation between stiffness and hardness. This suggests that organic-rich shale properties can be reduced to their elementary constituents, with several implications for the development of predictive functional relations between chemical composition and mechanical properties of organic-rich source rocks such as the intimate interplay between clay-packing, organic maturity, and mechanical properties of porous clay/organic phase.  相似文献   
43.
Two coeval stalagmites from Katerloch Cave show pronounced intervals of low δ18O values around 8.2, 9.1, and 10.0 kyr (all ages are reported before the year 2000 AD) and represent an inorganic U–Th dated climate archive from the southeast of the European Alps, a region where only very few well-dated climate records exist. The O isotope curves, providing near-annual resolution, allow a direct comparison to the Greenland ice core records, as temperature was the primary factor controlling the O isotopic composition of Katerloch speleothems.The 8.2 kyr climate anomaly lasted about one century, from 8196 to 8100 yr, with a maximum amplitude of 1.1‰ at 8175 yr. The event is characterized by a rapid onset and a more gradual demise and U–Th data as well as annual lamina counting support a rapid climate change towards cooler conditions within 10–20 yr. There is no strong evidence that the 8.2 kyr anomaly was superimposed on a pronounced longer-term cooling episode, nor do the new data support two separate cooling events within the 8.2 kyr event as reported by other studies. Our record also shows a distinct climate anomaly around 9.1 kyr, which lasted 70–110 yr and showed a maximum amplitude of 1.0‰, i.e. it had a similar duration and amplitude as the (central) 8.2 kyr event. Compared to the 8.2 kyr event, the 9.1 kyr anomaly shows a more symmetrical structure, but onset and demise still occurred within a few decades only. The different progression of the 8.2 (asymmetrical) and 9.1 kyr anomaly (symmetrical) suggests a fundamental difference in the trigger and/or the response of the climate system. Moreover, both stalagmites show evidence of a climate anomaly around 10.0 kyr, which was of comparable magnitude to the two subsequent events.Using a well constrained modern calibration between air temperature and δ18O of precipitation for the study area and cave monitoring data (confirming speleothem deposition in Katerloch reflecting cave air temperature), a maximum cooling by ca 3 °C can be inferred at 8.2 and 9.1 kyr, which is similar to other estimates, e.g., from Lake Ammersee north of the Alps. The O isotopic composition of meteoric precipitation, however, is a complex tracer of the hydrological cycle and these temperature estimates do not take into account additional effects such as changes in the source area or synoptic shifts. Apart from that, the relative thickness of the seasonally controlled lamina types in the Katerloch stalagmites remains rather constant across the intervals comprising the isotopic anomalies, i.e. the stalagmite petrography argues against major shifts in seasonality during the early Holocene climate excursions.  相似文献   
44.
Despite significant research advances achieved during the last decades, seemingly inconsistent forecasting results related to stochastic, chaotic, and black-box approaches have been reported. Herein, we attempt to address the entropy/complexity resulting from hydrological and climatological conditions. Accordingly, mutual information function, correlation dimension, averaged false nearest neighbor with E1 and E2 quantities, and complexity analysis that uses sample entropy coupled with iterative amplitude adjusted Fourier transform were employed as nonlinear deterministic identification tools. We investigated forecasting of daily streamflow for three climatologically different Swedish rivers, Helge, Ljusnan, and Kalix Rivers using self-exciting threshold autoregressive (SETAR), k-nearest neighbor (k-nn), and artificial neural networks (ANN). The results suggest that the streamflow in these rivers during the 1957–2012 period exhibited dynamics from low to high complexity. Specifically, (1) lower complexity lead to higher predictability at all lead-times and the models’ worst performances were obtained for the most complex streamflow (Ljusnan River), (2) ANN was the best model for 1-day ahead forecasting independent of complexity, (3) SETAR was the best model for 7-day ahead forecasting by means of performance indices, especially for less complexity, (4) the largest error propagation was obtained with the k-nn and ANN and thus these models should be carefully used beyond 2-day forecasting, and (5) higher number input variables except for the dominant variables made insignificant impact on forecasting performances for ANN and k-nn models.  相似文献   
45.
The measured geophysical response of sand – shale sequences is an average over multiple layers when the tool resolution (seismic or well log) is coarser than the scale of sand – shale mixing. Shale can be found within sand – shale sequences as laminations, dispersed in sand pores, as well as load bearing clasts. We present a rock physics framework to model seismic/sonic properties of sub-resolution interbedded shaly sands using the so-called solid and mineral substitution models. This modelling approach stays consistent with the conceptual model of the Thomas–Stieber approach for estimating volumetric properties of shaly sands; thus, this work connects established well log data-based petrophysical workflows with quantitative interpretation of seismic data for modelling hydrocarbon signature in sand – shale sequences. We present applications of the new model to infer thickness of sand – shale lamination (i.e., net to gross) and other volumetric properties using seismic data. Another application of the new approach is fluid substitution in sub-resolution interbedded sand–shale sequences that operate directly at the measurement scale without the need to downscale; such a procedure has many practical advantages over the approach of “first-downscale-and-then-upscale” as it is not very sensitive to errors in estimated sand fraction and end member sand/shale properties and remains stable at small sand/shale fractions.  相似文献   
46.
Geophysical surveying of the Arctic will become increasingly important in future prospecting and monitoring of the terrestrial and adjacent areas in this hemisphere. Seismic data acquired on floating ice are hampered with extensive noise due to ice vibrations related to highly dispersive ice flexural waves generated by the seismic source. Several experiments have been conducted on floating ice in van Mijenfjorden in Svalbard in the Norwegian Arctic to specifically analyse the extent of flexural waves recorded with various seismic receivers and sources deployed both on top of ice and in the water below. The data show that flexural waves are severely damped at 5 m or deeper below the ice and hydrophone data suffer less from these vibrations compared with data recorded on the ice. Aliasing of single receiver hydrophone data can to some extent be suppressed using an in-line line source of detonating cord. Experiments on ice on shallow water show prominent guided wave modes often referred to as Scholte waves propagating along the seabed. In this case, both flexural and Scholte waves interfere and make a complicated pattern of coherent noise. On shallow water, the positioning and type of the seismic source must be evaluated with respect to the coherent noise generated by these waves. Geophone strings of 25 m effectively suppress both flexural and Scholte waves due to their relative short wavelengths. An airgun generates relative more low-frequency energy than a surface source of detonating cord. Accordingly, seismic mapping of deep seismic horizons seem to be best achieved using geophone strings of such length and an airgun source. For shallow targets, the use of hydrophones in combination with detonating cord is an appropriate solution. Seismic surveying in the Arctic always have to follow environmental restrictions of not disturbing or harming wildlife and not causing permanent footprints into the vulnerable tundra, which implies that the choice of seismic acquisition strategy might occur as a trade-off between optimum data quality and environmental constraints.  相似文献   
47.
Fluvial red beds containing anatomically preserved large woody debris shed new light on seasonally dry biomes of the Pennsylvanian–Permian transition and elucidate the concurrence of river depositional systems and vegetation. As a result, the occurrence, distribution and preservation of petrified large woody debris accumulations are considered crucial to understanding the role of arborescent vegetation in shaping fluvial environments. This study reports sizeable silicified trunks and corresponding fluvial architectures from the uppermost Pennsylvanian (upper Gzhelian) Siebigerode Formation (Kyffhäuser, central Germany). The origin, taphonomy and depositional environment of the fossil woods are elucidated by using a multidisciplinary approach including geological mapping, lithofacies analysis, sediment petrography, wood anatomical studies and microstructure analyses. Results reflect the gradual burial of a gentle basement elevation by sand-bed to gravel-bed braided rivers at the north-western margin of the perimontane Saale Basin. Facies architectures resulted from a complex interplay of syndepositional tectonics, repeated palaeorelief rejuvenation, high-frequency channel avulsion, seasonally dry climate and woody debris–sediment interactions. The alluvial influx and cut-bank erosion recruited trunks from adjacent semi-riparian slope habitats vegetated by up to 40 m tall cordaitaleans and conifers. High discharge in wide braids facilitated uncongested transport of large woody debris. Trunk entombment and initial preservation resulted from grounding on barforms, anchoring by attached roots and subsequent burial. The post-depositional two-phase silicification was influenced by hydrothermal hematite mineralization and determined a selective wood preservation pattern known as ‘pointstone’. Large woody debris-induced sedimentary structures (‘LWDISS’) are introduced as a class of sediment structures formed by the biogenic impact on terrestrial deposition.  相似文献   
48.
49.
A first experimental study was conducted to determine the equilibrium iron isotope fractionation between pyrrhotite and silicate melt at magmatic conditions. Experiments were performed in an internally heated gas pressure vessel at 500 MPa and temperatures between 840 and 1000 °C for 120-168 h. Three different types of experiments were conducted and after phase separation the iron isotope composition of the run products was measured by MC-ICP-MS. (i) Kinetic experiments using 57Fe-enriched glass and natural pyrrhotite revealed that a close approach to equilibrium is attained already after 48 h. (ii) Isotope exchange experiments—using mixtures of hydrous peralkaline rhyolitic glass powder (∼4 wt% H2O) and natural pyrrhotites (Fe1 − xS) as starting materials— and (iii) crystallisation experiments, in which pyrrhotite was formed by reaction between elemental sulphur and rhyolitic melt, consistently showed that pyrrhotite preferentially incorporates light iron. No temperature dependence of the fractionation factor was found between 840 and 1000 °C, within experimental and analytical precision. An average fractionation factor of Δ 56Fe/54Fepyrrhotite-melt = −0. 35 ± 0.04‰ (2SE, n = 13) was determined for this temperature range. Predictions of Fe isotope fractionation between FeS and ferric iron-dominated silicate minerals are consistent with our experimental results, indicating that the marked contrast in both ligand and redox state of iron control the isotope fractionation between pyrrhotite and silicate melt. Consequently, the fractionation factor determined in this study is representative for the specific Fe2+/ΣFe ratio of our peralkaline rhyolitic melt of 0.38 ± 0.02. At higher Fe2+/ΣFe ratios a smaller fractionation factor is expected. Further investigation on Fe isotope fractionation between other mineral phases and silicate melts is needed, but the presented experimental results already suggest that even at high temperatures resolvable variations in the Fe isotope composition can be generated by equilibrium isotope fractionation in natural magmatic systems.  相似文献   
50.
In order to systematically and visually understand well-known but qualitative and complex relationships between synoptic fields and heavy rainfall events in Kyushu Islands, southwestern Japan, during the BAIU season, these synoptic fields were classified using the Self-Organizing Map (SOM), which can convert complex non-linear features into simple two-dimensional relationships. It was assumed that the synoptic field patterns could be simply expressed by the spatial distribution of (1) wind components at the 850 hPa level and (2) precipitable water (PW) defined by the water vapor amount contained in a vertical column of the atmosphere. By the SOM algorithm and the clustering techniques of the U-matrix and the K-means, the synoptic fields could be divided into eight kinds of patterns (clusters). One of the clusters has the notable spatial features represented by a large PW content accompanied by strong wind components known as low-level jet (LLJ). The features of this cluster indicate a typical synoptic field pattern that frequently causes heavy rainfall in Kyushu during the rainy season.In addition, an independent data set was used for validating the performance of the trained SOM. The results indicated that the SOM could successfully extract heavy rainfall events related to typical synoptic field patterns of the BAIU season. Interestingly, one specific SOM unit was closely related to the occurrence of disastrous heavy rainfall events observed during both training and validation periods. From these results, the trained SOM showed good performance for identifying synoptic fields causing heavy rainfall also in the validation period. We conclude that the SOM technique may be an effective tool for classifying complicated non-linear synoptic fields and identifying heavy rainfall events to some degree.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号