首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   4篇
  国内免费   1篇
测绘学   4篇
大气科学   4篇
地球物理   29篇
地质学   30篇
海洋学   10篇
天文学   30篇
自然地理   2篇
  2021年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   4篇
  2009年   9篇
  2008年   10篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1976年   3篇
  1975年   1篇
  1969年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
101.
Tokyo Bay is one of the estuaries in Japan with a high population of almost 26 million people in the basin area. One of the major concerns for the environment in this water area is the decreasing ecosystem functions including the deterioration of water and sediment qualities caused by various anthropogenic activities. Since the bottom sediments around almost the entire area of the inner bay consist of fine materials with a high organic content, which cause the deterioration of water quality through processes such as hypoxia, an understanding of the fine sediment dynamics in the Bay is crucial for an environmental assessment of the water area. This paper proposes a model for the key processes of fine sediment dynamics, which reflects field data about muddy bed structures and their dynamics obtained during the monitoring campaign in 2007. One of the specific features of the sediment in the Bay at present is the persistent existence of fluid mud layers (water content over 300?%) with a thickness of around a few decimeters, which might be caused by deposition of abundant organic particles due to eutrophication. The present study shows that diffusion flux model delivers quite reliable results for estimating erosion flux from the top of fluid mud layers after calibrating the model parameter against the time series data of vertical flux measured by an acoustic Doppler velocimeter system. This study also derives analytical solutions, based on the Bingham fluid concept, of advection flux in the fluid mud layer on which external shear stress force is applied.  相似文献   
102.
A global barotropic ocean model forced by atmospheric disturbances is developed for the detection of seafloor vertical displacements from in situ ocean bottom pressure (OBP) data. The model accuracy is validated by deep-sea OBP data at more than 100 sites obtained over the global ocean. Parameters and boundary conditions including the horizontal resolution incorporated in the ocean model are tested in order to accurately simulate the nontidal (>2 days) OBP variations. The horizontal resolution is found to the factor that most significantly affects the simulated result. The finer the horizontal resolution applied, the smaller the model variability is. The model accuracy is highest when the horizontal resolution is 1/12°, but deteriorates when the horizontal resolution is finer than 1/12°. This may indicate a failure of the energy dissipation parameterization in the barotropic ocean model. Using the developed 1/12° model, the root-mean-square of the observed nontidal OBP component can be reduced by 18 % as an average of all the OBP data used. It is found that the 1/12° model is useful for the detection of a slow seafloor vertical displacement of centimeters related to the 2011 Tohoku-Oki earthquake from in situ OBP records near the hypocenter of the earthquake.  相似文献   
103.
Space geodetic applications require to model troposphere delays as good as possible in order to achieve highly accurate positioning estimates. However, these models are not capable to consider complex refractivity fields which are likely to occur during extreme weather situations like typhoons, storms, heavy rain-fall, etc. Thus it has been investigated how positioning results can be improved if information from numerical weather models is taken into account. It will be demonstrated that positioning errors can be significantly reduced by the usage of ray-traced slant delays. Therefore, meso-scale and fine-mesh numerical weather models are utilized and their impact on the positioning results will be measured. The approach has been evaluated during a typhoon passage using global positioning service (GPS) observations of 72 receivers located around Tokyo, proving the usefulness of ray-traced slant delays for positioning applications. Thereby, it is possible reduce virtual station movements as well as improve station height repeatabilities by up to 30% w.r.t. standard processing techniques. Additionally the advantages and caveats of numerical weather models will be discussed and it will be shown how fine-mesh numerical weather models, which are restricted in their spatial extent, have to be handled in order to provide useful corrections.  相似文献   
104.
Concentrations of 4-nonylphenol (NP) were determined by isomer-specific quantification of individual NP isomers based on relative response factor (RRF) quantification with GC–MS in combination with steam distillation extraction. Concentrations of NP in the Ariake Sea decreased with distance from the river mouth (St.A; 49 ng NP/l) to offshore areas (St.C; 11 ng NP/l). Even the least concentration in water from St.C in Ariake Sea was sufficient to have adverse effects on barnacles. The isomers, NP1–NP14 were separated by GC–PFC and identified structurally with NMR. The isomers varied in estrogenic activity with NP7 exhibiting the greatest estrogenic activity with a potency that was approximately 1.9 × 10−3 that of 17β-estradiol (E2) in recombinant yeast screen system. The coefficient of variation (CV) of NP isomer’s concentrations among three samples at St.A, B and C were 4–75%. This suggests that NP isomers might be independently degraded in aquatic environmental samples. The predicted estrogenic activity of measured concentrations of NP in Ariake Sea was 2.7–3.0-fold greater than the measured estrogen agonist activity.  相似文献   
105.
The Aoso volcano is a member of the newly defined volcanic front of Northeast Japan, characterized by the occurrence of low-K and hornblende andesites. Its activity can be divided into three stages: the early, caldera-forming, and late stages. While petrographic and geochemical data show all products underwent magma mixing or co-mingling, Sr and Nd isotopic ratios indicate that all are consanguineous. The end-member magmas are basaltic and andesitic in the early stage, but basaltic and dacitic in the late stage. In the caldera-forming stage, hornblende-free and hornblende-rich andesites co-mingled, which triggered an explosive eruption leading to caldera formation. Hornblende occurs also in the dacite from the early part of the late stage. These hornblende andesites and dacites are lower in magmatic temperature compared to hornblende-free andesites. The estimated basaltic end-member is low-K and high in magmatic temperature, and can be derived by a high degree of partial melting of mantle under the volcanic front. The estimated andesitic and dacitic end-members cannot be derived from the basaltic end-member magma through fractional crystallization, but can be derived from partial re-melting of the solidified low-K basalt, leaving amphibolitic and gabbroic residues, respectively.  相似文献   
106.
Relation between hydrogen emission and seismic activities   总被引:2,自引:0,他引:2  
Measurements of chemical composition of bubbles from a mineral spring at Yuya Spa situated close to the Median Tectonic Line, the longest active fault in Japan, showed that the periods of increased H2 emission coincided with occurrences of the Ohno earthquake swarm nearby. Four cases of the coincidence without exception were observed in the last three years. The fluctuation of H2 concentration ranges between <0.5 and 200 ppm, whereas other gases such as He, Ar, N2, and CH4 do not fluctuate much. The H2 concentration is correlated with the energy released by the seismic activity. This field evidence, together with the results of laboratory experiments conducted bySugisaki et al. (1983), leads to the conclusion that H2 observed at the mineral spring was produced by the reaction between groundwater and rock fractured in the seismic activities. The observation that H2 in the mineral spring tends to appear prior to an earthquake suggests that microcracks may occur in rocks prior to earthquakes. The precursory emission of H2 may be useful for earthquake prediction.  相似文献   
107.
Methane (\(\mathrm {CH}_{4}\)) is known to be emitted from lakes to the atmosphere via processes such as diffusion and ebullition (i.e., bubble emission). We developed a practical method for partitioning eddy-covariance \(\mathrm {CH}_{4}\) fluxes from a shallow lake into diffusive and ebullitive fluxes using a wavelet analysis based on local scalar similarity between the \(\mathrm {CH}_{4}\) concentration and other reference scalars, such as the air temperature or water vapour concentration, in the wavelet time-scale domain, with the hypothesis that similar and dissimilar fluctuation components are related to diffusive and ebullitive \(\mathrm {CH}_{4}\) fluxes, respectively. Our method is applied to approximately two weeks of data obtained at a shallow mid-latitude lake. The partitioned diffusive flux has a physically sound relationship with wind speed, supporting the validity of the method. The ratio of the diffusive flux to the total flux is typically 0.11 with flow from an area of steady bubble emission, but otherwise 0.36. Further validation is required using a larger dataset and data from other lakes. The proposed method can be easily applied to historical data because it requires only 10-Hz data of \(\mathrm {CH}_{4}\) concentration and other reference scalars, along with an empirical parameter.  相似文献   
108.
109.
The cascading failure of multiple landslide dams can trigger a larger peak flood discharge than that caused by a single dam failure.Therefore,for an accurate numerical simulation,it is essential to elucidate the primary factors affecting the peak discharge of the flood caused by a cascading failure,which is the purpose of the current study.First,flume experiments were done on the cascading failure of two landslide dams under different upstream dam heights,downstream dam heights,and initial downstream reservoir water volumes.Then,the experimental results were reproduced using a numerical simulation model representing landslide dam erosion resulting from overtopping flow.Finally,the factors influencing the peak flood discharge caused by the cascading failure were analyzed using the numerical simulation model.Experimental results indicated that the inflow discharge into the downstream dam at the time when the downstream dam height began to rapidly erode was the main factor responsible for a cascading failure generating a larger peak flood discharge than that generated by a single dam failure.Furthermore,the results of a sensitivity analysis suggested that the upstream and downstream dam heights,initial water volume in the reservoir of the downstream dam,upstream and downstream dam crest lengths,and distance between two dams were among the most important factors in predicting the flood discharge caused by the cascading failure of multiple landslide dams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号