首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   10篇
  国内免费   53篇
测绘学   3篇
大气科学   12篇
地球物理   29篇
地质学   236篇
海洋学   3篇
天文学   12篇
综合类   5篇
自然地理   3篇
  2022年   8篇
  2021年   2篇
  2020年   10篇
  2019年   10篇
  2018年   18篇
  2017年   14篇
  2016年   7篇
  2015年   16篇
  2014年   7篇
  2013年   23篇
  2012年   16篇
  2011年   17篇
  2010年   18篇
  2009年   14篇
  2008年   13篇
  2007年   6篇
  2006年   14篇
  2005年   9篇
  2004年   8篇
  2003年   9篇
  2002年   5篇
  2001年   10篇
  2000年   6篇
  1999年   10篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1971年   3篇
  1970年   1篇
排序方式: 共有303条查询结果,搜索用时 375 毫秒
71.
Summary Kalsilite, leucite and hibonite occur together with spinel, corundum, sphene, perovskite, Ti-phlogopite and K-feldspar in a granulite facies gneiss in the Punalur district in Kerala, southern India. Kalsilite-leucite-perovskite-phlogopite and kalsilite-hibonite-spinelcorundum formed distinct, texturally equilibrated assemblages during the granulite facies metamorphism. Sphene occurs as coronas on perovskite suggesting the retrograde breakdown of the perovskite-leucite association; leucite is partially altered to symplectites of K-feldspar and kalsilite, while hibonite shows partial replacement by corundum and perovskite in spinel-rich domains. Unlike other terrestrial hibonites the majority of the Punalur hibonites contain no significant rare earths (REE < 0.01 atoms per 190), with a composition approximated by Ca0.85Ti0.9Mg0.25Fe0.25Ali10.4O19 although a few zoned hibonites have REE rich cores with REE > 0.6 atoms per 19 O. Garnet-hypersthene granulites from Punalur and garnet-charnockites from elsewhere in Kerala suggest metamorphism at 700–800°C and 3.5–6.5 kbars; consistent with experimentally determined stability limit of leucite of low a(H2O). The metamorphic conditions recorded by the Punalur assemblages testify to relatively low pressure conditions for a granulite facies terrain but are by no means unique. The scarcity of potassium feldspathoid in the metamorphic record must therefore be attributed to the exceptional compositional requirements of extreme silica undersaturation combined with low Na/K ratios.
Eine Kalsilit-Leucite-Hibonit Paragenese in Granulit Fazies von Punalur, Süd-Indien
Zusammenfassung Kalsilit, Leuzit, and Hibonit kommen zusammen mit Spinell, Korund, Titanit, Perovskit, Ti-Phlogopit and K-Feldspat in einem granulitfaziellen Gneiss des Punalur-Distriktes in Kerala, Süd-Indien vor. Kalsilit-Leuzit-Perovskit-Phologopit and Kalsilit-Hibonit-Spinell-Korund bildeten wdhrend der Granulit-Fazies-Metamorphose deutliche Paragenesen, die texturell im Gleichgewicht sind. Titanit kommt als Koronas aufPerovskit vor und dies weist auf den retrograden Zerfall der Perovskit-Leuzit Paragenese hin. Leuzit ist teilweise zu Symplektiten von K-Feldspat und Kalsilit umgewandelt, während Hibonit Verdrängung durch Korund und Perovskit in spinellreichen Domänen zeigt. Im Gegensatz zu anderen terrestrischen Hiboniten, führt die Mehrzahl der Hibonite von Punalur, mit einer ungefähren Zusammensetzung von Ca0.85Ti0.9Mg0.58Fe0.25Ali10.4O19, keine wesentlichen Seltenen-Erd-Gehalte (SEE < 0.01 Atome per 19 0). Trotzdem gibt es einige wenige zonierte Hibonite, deren Kerne reich an SEE sind mit ESEE > 0.6 Atome per 19 O. Granat-Hypersthen Granulite aus Punalur and Granat-Charnockite von anderen Teilen Kerala's weisen auf eine Metamorphose bei 700–800°C und 3.5–6.5 kbar hin; dies ist in guter Übereinstimmung mit der experimentell bestimmten Stabilitätsgrenze von Leuzit bei niederigen a(H2O). Die metamorphen Bedingungen, die die Punalur-Paragenesen dokumentieren, zeigen relativ niedrige Druckbedingungen für ein Granulit-Fazies Terrain an; das ist aber keineswegs einmalig. Die Seltenheit von Kali-Feldspathoiden während der metamorphen Entwicklung muß deshalb auf die ungewöhnlichen Erfordernisse extremer Silizium-Untersättigung, zusammen mit niedrigen Na/K-Verhältnissen, zurückgehen.


With 6 figures  相似文献   
72.
For spherical blast waves propagating through a self-gravitating gas with an energy inputE =E 0 t , whereE is the energy released up to timet,E 0 is a functional constant, and is a constant, kinetic, internal heat, and gravitational potential energies have been computed. Taking the parameterA 2, which characterises the gravitational field, equal to 2, variations of the percentages of these energies for =0, 1/2, 4/3, and 3 with shock strength have been presented. For =3, the effect of cavitation on the percentages of kinetic energy and internal heat energies has been explored.  相似文献   
73.
The Fuping Complex is one of the important basement terranes within the central segment of the Trans‐North China Orogen (TNCO) where mafic granulites are exposed as boudins within tonalite–trondhjemite–granodiorite (TTG) gneisses. Garnet in these granulites shows compositional zoning with homogeneous cores formed in the peak metamorphic stage, surrounded by thin rims with an increase in almandine and decrease in grossular contents suggesting retrograde decompression and cooling. Petrological and phase equilibria studies including pseudosection calculation using thermocalc define a clockwise P–T path. The peak mineral assemblages comprise garnet+clinopyroxene+amphibole+quartz+plagioclase+K‐feldspar+ilmenite±orthopyroxene±magnetite, with metamorphic P–T conditions estimated at 8.2–9.2 kbar, 870–882 °C (15FP‐02), 9.6–11.3 kbar, 855–870 °C (15FP‐03) and 9.7–10.5 kbar, 880–900 °C (15FP‐06) respectively. The pseudosections for the subsequent retrograde stages based on relatively higher H2O contents from P/T–M(H2O) diagrams define the retrograde P–T conditions of <6.1 kbar, <795 °C (15FP‐02), 5.6–5.8 kbar, <795 °C (15FP‐03), and <9 kbar, <865 °C (15FP‐06) respectively. Data from LA‐ICP‐MS zircon U–Pb dating show that the mafic dyke protoliths of the granulite were emplaced at c. 2327 Ma. The metamorphic zircon shows two groups of ages at 1.96–1.90 Ga (peak at 1.93–1.92 Ga) and 1.89–1.80 Ga (peak at 1.86–1.83 Ga), consistent with the two metamorphic events widely reported from different segments of the TNCO. The 1.93–1.92 Ga ages are considered to date the peak granulite facies metamorphism, whereas the 1.86–1.83 Ga ages are correlated with the retrograde event. Thus, the collisional assembly of the major crustal blocks in the North China Craton (NCC) might have occurred during 1.93–1.90 Ga, marking the final cratonization of the NCC.  相似文献   
74.
The paper presents the first comprehensive survey of congener profiles (12 congeners) of polybrominated diphenyl ethers (PBDEs) in core sediment samples (<63 microm) covering seven sites in Sundarban mangrove wetland (India). Gas-chromatographic analyses were carried out in GC-Ms/Ms for tri- to hepta- brominated congeners. Results pointed out a non-homogenous contamination of the wetland with summation operator(12) PBDE values ranging from 0.08 to 29.03 ngg(-1), reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47>99>100>154, similar to the distribution pattern worldwide. Although tetrabromodiphenyl ether BDE 47 was found in all samples followed by hexabromodiphenyl ether BDE-154, they were not necessarily the dominant congeners. No uniform temporal trend on PBDE levels was recorded probably due to particular hydrological characteristics of the wetland and/on non-homologous inputs from point sources (untreated municipal wastewater and local industries, electronic wastes from the dump sites, etc.) of these compounds. Because of the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority.  相似文献   
75.
Glaciological mass balance(MB)is considered the most direct,undelayed and unfiltered response of the glaciers to climatic perturbations.However,it may inherit errors associated with stake underrepresentation,averaging over the entire glacier and human bias.Therefore,proper validation of glaciological MB with geodetic MB is highly recommended by the World Glacier Monitoring Service(WGMS).The present study focuses on the Dokriani Glacier,central Himalaya which is one of the bench-mark glaciers in the region and has glaciological MB records from 1993 to 2013 with intermittent gaps.In the present study,firstly the glaciological MB series is extended to 2014 i.e.,field-based MB for one more year is computed and,to compare with it,the geodetic MB is computed for the 1999–2014 period using high resolution Cartosat-1 digital elevation model(DEM)and SRTM DEM.Finally,the study assesses the regional representation of the Dokriani Glacier in terms of MB and evaluates the influence of the MB regime on its morphological evolution.Results show that the average glaciological MB(-0.34±0.2 m water equivalent(w.e.)y-1)is more negative than the geodetic MB(-0.23±0.1 m w.e.y-1)for the 1999–2014 period.This is likely because of the partial representation of glacier margins in the glaciological MB,where melting is strikingly low owing to thick debris cover(>30 cm).In contrast,geodetic MB considers all marginal pixels leading to a comparatively low MB.A comparative assessment shows that the MB of Dokriani Glacier is less negative(possibly due to its huge accumulation area)than most other glacier-specific and regional MBs,restricting it to be a representative glacier in the region.Moreover,continuous negative MB has brought a peculiar change in the epiglacial morphology in the lower tongue of the glacier as differential debris thickness-induced differential melting has turned the glacier surface into a concave one.This concavity has led to development of a large(10–20 m deep)supraglacial channel which is expanding incessantly.The supraglacial channel is also connected with the snout wall and accelerates terminus disintegration.Given the total thickness of about 30–50 m in the lower glacier tongue,downwasting at its current pace,deepening/widening of supraglacial channel coupled with rapid terminus retreat may lead to the complete vanishing of the lower one km glacier tongue.  相似文献   
76.
Late Archaean to Palaeoproterozoic felsic magmatic lithounits exposed in the central part of the Bundelkhand massif have been mapped and their redox series (magnetite vs ilmenite series) evaluated based on magnetic susceptibility (MS) data. The central part of Bundelkhand massif comprises of multiple felsic magmatic pulses (∼2600–2200 Ma), commonly represented by coarse grained granite (CGG-grey granite, CPG-pink granite), medium grained pink granite (MPG), fine grained pink granite (FPG), grey and pink rhyolites and granite porphyry (GP). However, the pink colour of these felsic rocks is the result of hydrothermal fluid-flushing leading to potassic alteration of grey granites. MS values of CGG vary from 0.058 to 14.75×10−3 SI with an average of 6.35×10−3 SI, which mostly represent oxidized type, magnetite series (73%) granites involving infracrustal (igneous) source materials. CPG (av. MS=3.95×10−3 SI) is indeed a pink variety of CGG, the original oxidizing nature of which must have been similar to the bulk of CGG, but has been moderately to strongly reduced because of distinctly more porphyritic nature together with partial assimilation of metapelitic (supracrustal) materials, surmicaceous enclaves, carbonaceous material included in the source materials, and to some extent, induced by hydrothermal and later deformational processes. MPG (av. MS= 1.15×10−3 SI) as lensoidal stock-like bodies intrudes the CPG and represent both magnetite series (18%) and ilmenite series (82%) granites, which are probably formed by heterogeneous (mixed) source rocks. GP (av. MS=6.26×10−3 SI) occur as dykes (mostly trending NE-SW) intrudes the MPG, CPG and migmatites and bears the nature similar to oxidized type, magnetite series granite. FPG (av. MS= 0.666×10−3 SI) trending NE-SW occur as lensoid bodies including a large outcrop, is intrusive into both CPG and MPG, and is moderately to very strongly reduced type, ilmenite series granites, which may be derived by the melting of metapelitic crustal sources. FPG hosting microgranular (mafic magmatic) enclaves commonly exhibit high MS values (7.31–10.22×10−3 SI), which appear induced by the mixing and mingling of interacting felsic and mafic magmas prevailed in an open system. Grey (av. MS=10.30×10−3 SI) and pink (av. MS=6.72×10−3 SI) rhyolites represent oxidized type, magnetite series granites, which may have been derived from infracrustal (magmatic) protoliths. Granite series evaluation of felsic magmatic rocks of central part of Bundelkhand massif strongly suggests their varied redox conditions (differential oxygen fugacity) mostly intrinsic to magma source regions and partially modified by hydrothermal and tectonic processes acting upon them.  相似文献   
77.
Neoproterozoic (690±19 Ma) felsic magmatism in the south Khasi region of Precambrian northeast Indian shield, referred to as south Khasi granitoids (SKG), contains country-rock xenoliths and microgranular enclaves (ME). The mineral assemblages (pl-hbl-bt-kf-qtz-mag) of the ME and SKG are the same but differ in proportions and grain size. Modal composition of ME corresponds to quartz monzodiorite whereas SKG are quartz monzodiorite, quartz monzonite and monzogranite. The presence of acicular apatite, fine grains of mafic-felsic minerals, resorbed maficfelsic xenocrysts and ocellar quartz in ME strongly suggest magma-mixed and undercooled origin for ME. Molar Al2O3/CaO+Na2O+K2O (A/CNK) ratio of ME (0.68–0.94) and SKG (0.81–1.00) suggests their metaluminous (I-type) character. Linear to sub-linear variations of major elements (MgO, Fe2O3 t, P2O5, TiO2, MnO and CaO against SiO2) of ME and SKG and two-component mixing model constrain the origin of ME by mixing of mafic and felsic magmas in various proportions, which later mingled and undercooled as hybrid globules into cooler felsic (SKG) magma. However, rapid diffusion of mobile elements from felsic to mafic melt during mixing and mingling events has elevated the alkali contents of some ME.  相似文献   
78.
Concentrations of major ions, Sr and 87Sr/86Sr have been measured in the Gomti, the Son and the Yamuna, tributaries of the Ganga draining its peninsular and plain sub-basins to determine their contribution to the water chemistry of the Ganga and silicate and carbonate erosion of the Ganga basin. The results show high concentrations of Na and Sr in the Gomti, the Yamuna and the Ganga (at Varanasi) with much of the Na in excess of Cl. The use of this ‘excess Na’ (Na∗ = Nariv − Clriv) a common index of silicate weathering yield values of ∼18 tons km−2 yr−1 for silicate erosion rate (SER) in the Gomti and the Yamuna basins. There are however, indications that part of this Na∗ can be from saline/alkaline soils abundant in their basins, raising questions about its use as a proxy to determine SER of the Ganga plain. Independent estimation of SER based on dissolved Si as a proxy give an average value of ∼5 tons km−2 yr−1 for the peninsular and the plain drainages, several times lower than that derived using Na∗. The major source of uncertainty in this estimate is the potential removal of Si from rivers by biological and chemical processes. The Si based SER and CER (carbonate erosion rate) are also much lower than that in the Himalayan sub-basin of the Ganga. The lower relief, runoff and physical erosion in the peninsular and the plain basins relative to the Himalayan sub-basin and calcite precipitation in them all could be contributing to their lower erosion rates.Budget calculations show that the Yamuna, the Son and Gomti together account for ∼75% Na, 41% Mg and ∼53% Sr and 87Sr of their supply to the Ganga from its major tributaries, with the Yamuna dominating the contribution. The results highlight the important role of the plain and peninsular sub-basins in determining the solute and Sr isotope budgets of the Ganga. The study also shows that the anthropogenic contribution accounts for ?10% of the major ion fluxes of the Ganga at Rajmahal during high river stages (October). The impact of both saline/alkaline soils and anthropogenic sources on the major ion abundances of the Ganga is minimum during its peak flow and therefore the SER and CO2 consumption rates of the river is best determined during this period.  相似文献   
79.
The Central India Tectonic Zone (CITZ) is a prominent divide and a major suture zone between the North Indian and South Indian crustal blocks. The resistive upper crust as modeled in the magnetotelluric data from CITZ suggests a dominant tonalite–trdondhjemite–granodiorite composition associated with an accretionary complex characterized by mainly felsic rock components. The highly conductive bodies in this zone might represent mafic/ultramafic-layered intrusives derived from a deeper reservoir of underplated basaltic magma related to the formation of the Cretaceous Deccan flood basalts. The uniformly thick mafic lower crust below the cratons on both sides of the suture is interpreted as the accreted remnants of Archaean and Paleoproterozoic subducted slabs. We redefine the nature of deep faults traversing the CITZ, which were described as steep and penetrating the Moho by previous workers, and classify them as listric faults with gentle dips at depth.Seismic reflection data from the eastern side of the suture suggest a northwestward subduction of the Bhandara Craton. Reflection data from the central part of the CITZ show northerly dip in the southern part suggesting northward subduction of the Dharwar Craton. However, an opposite trend is observed in the northern part of the suture with a southward dip of the Bundelkhand craton. Based on these features, and in conjunction with existing magnetotelluric models, we propose a double-sided subduction history along the CITZ. This would be similar to the ongoing subduction–accretion process in the western Pacific region, which possibly led to the development of paired collision-type and Pacific-type orogens. One important feature is the domal structure along the central part of the suture with a thick felsic crust occurring between mafic and intermediate crust. The high resistivity felsic domain suggests underplated sediments/felsic crust that would have caused the doming. Our model also accounts for the extrusion of regional metamorphic belts at the orogenic core, and the occurrence of high pressure–ultrahigh-temperature paired metamorphic belts within the suture.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号