首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2862篇
  免费   82篇
  国内免费   100篇
测绘学   274篇
大气科学   264篇
地球物理   510篇
地质学   1438篇
海洋学   131篇
天文学   318篇
综合类   52篇
自然地理   57篇
  2023年   16篇
  2022年   58篇
  2021年   58篇
  2020年   68篇
  2019年   73篇
  2018年   259篇
  2017年   238篇
  2016年   218篇
  2015年   140篇
  2014年   192篇
  2013年   266篇
  2012年   166篇
  2011年   165篇
  2010年   142篇
  2009年   143篇
  2008年   122篇
  2007年   76篇
  2006年   78篇
  2005年   53篇
  2004年   43篇
  2003年   36篇
  2002年   25篇
  2001年   26篇
  2000年   32篇
  1999年   28篇
  1998年   20篇
  1997年   16篇
  1996年   9篇
  1995年   11篇
  1994年   19篇
  1993年   13篇
  1992年   7篇
  1991年   26篇
  1990年   19篇
  1989年   16篇
  1988年   10篇
  1987年   19篇
  1986年   15篇
  1985年   16篇
  1984年   13篇
  1983年   6篇
  1982年   6篇
  1979年   8篇
  1978年   5篇
  1975年   6篇
  1974年   11篇
  1973年   5篇
  1972年   8篇
  1971年   8篇
  1969年   5篇
排序方式: 共有3044条查询结果,搜索用时 171 毫秒
41.
Experiments were carried out to investigate the rheological properties of coal–oil–water suspension containing solids of different sizes. Two different coal samples with mean particle sizes of 120 mesh, 175 mesh and 220 mesh were used. The coal concentration was varied from 5% to 25% by weight. Sodium silicate has been used as an additive to study the behavior of the variation of average viscosity of the suspension. A generalized correlation has been developed to predict the average viscosity of suspension in terms of particle diameter of the coal, concentration of coal, viscosity of the suspending medium and the concentration of water. Experimental investigations revealed that coal–oil–water suspensions show an increase in the viscosity with decrease in coal size but with the addition of an additive, the average viscosity tends to decrease initially up to a certain optimum dosages and thereafter it increases with further addition of additives. Two empirical correlations are proposed for average viscosity of the coal–oil–water suspension, μsL in terms of physical properties of the solid and viscosity of the suspending medium with and without additives.  相似文献   
42.
43.
K. Sajeev  M. Santosh  H.S. Kim 《Lithos》2006,92(3-4):465-483
The Kodaikanal region of the Madurai Block in southern India exposes a segment of high-grade metamorphic rocks dominated by an aluminous garnet–cordierite–spinel–sillimanite–quartz migmatite suite, designated herein as the Kodaikanal Metapelite Belt (KMB). These rocks were subjected to extreme crustal metamorphism during the Late Neoproterozoic despite the lack of diagnostic ultrahigh-temperature assemblages. The rocks preserve microstructural evidence demonstrating initial-heating, dehydration melting to generate the peak metamorphic assemblage and later retrogression of the residual assemblages with remaining melt. The peak metamorphic assemblage is interpreted to be garnet + sillimanite + K-feldspar + spinel + Fe–Ti oxide + quartz + melt, which indicates pressure–temperature (P–T) conditions around 950–1000 °C and 7–8 kbar based on calculated phase diagrams. A clockwise P–T path is proposed by integrating microstructural information with pseudosections. We show that evidence for extreme crustal metamorphism at ultrahigh-temperature conditions can be extracted even in the cases where the rocks lack diagnostic ultrahigh-temperature mineral assemblages. Our approach confirms the widespread regional occurrence of UHT metamorphism in the Madurai Block during Gondwana assembly and point out the need for similar studies on adjacent continental fragments.  相似文献   
44.
M. Santosh  K. Sajeev   《Lithos》2006,92(3-4):447-464
We report three new localities of corundum and sapphirine-bearing hyper aluminous Mg-rich and silica-poor ultrahigh-temperature granulites formed during Late Neoproterozoic-Cambrian times within the Palghat–Cauvery Shear Zone system in southern India. From petrologic characteristics, mineral chemistry and petrogenetic grid considerations, the peak metamorphic conditions of these rocks are inferred to lie around 950–1000 °C (as suggested by Al in orthopyroxene thermometer) at pressures above 10 kbar (as indicated by the equilibrium orthopyroxene–sillimanite–gedrite ± quartz assemblage). These rocks preserve several remarkable reaction textures, the most prominent among which is the triple corona of spinel–sapphirine–cordierite on corundum, with the whole textural assembly embedded within the matrix of gedrite, suggesting the reaction: Ged + Crn = Spl + Spr + Crd. The formation of sapphirine–sillimanite assemblage/symplectite associated with relict corundum and porphyroblasitc cordierite is explained by the reaction: Crd + Crn = Spr + Sil. The association of sapphirine cordierite symplectite with gedrite–sillimanite assemblage as well as with aluminosilicate boundaries indicates the gedrite consuming reaction: Ged + Sil = Spr + Crd. Extensive growth of sapphirine–cordierite observed on the rim of gedrite porphyroblasts with spinel occurring as relict inclusions within the sapphirine indicates the reaction: Ged + Spl = Spr + Crd. The pressure–temperature (PT) path defined from the observed mineral assemblages and reaction texture is characterized by anticlockwise trajectory, with a prograde segment of initial heating and subsequent deep burial, followed by retrograde near-isothermal decompression. Such an anticlockwise trajectory is being reported for the first time from southern India and has important tectonic implications since these rocks were developed at the leading edge of the crustal block that was involved in collisional orogeny and subsequent extension during the final phase of assembly of the Gondwana supercontinent. We propose that the rocks were subjected to deep subduction and rapid exhumation, and the extreme thermal conditions were attained either through input from underplated mantle-derived magmas, or convective thinning or detachment of the lithospheric thermal boundary layer during or after crustal thickening.  相似文献   
45.
Toshiaki Tsunogae  M. Santosh 《Lithos》2006,92(3-4):524-536
We report here a multiphase mineral inclusion composed of quartz, plagioclase, K-feldspar, sapphirine, spinel, orthopyroxene, and biotite, in porphyroblastic garnet within a pelitic granulite from Rajapalaiyam in the Madurai Granulite Block, southern India. In this unique textural association, hitherto unreported in previous studies, sapphirine shows four occurrences: (1) as anhedral mineral between spinel and quartz (Spr-1), (2) subhedral to euhedral needles mantled by quartz (Spr-2), (3) subhedral to anhedral mineral in orthopyroxene, and (4) isolated inclusion with quartz (Spr-4). Spr-1, Spr-2, and Spr-4 show direct grain contact with quartz, providing evidence for ultrahigh-temperature (UHT) metamorphism at temperatures exceeding 1000 °C. Associated orthopyroxene shows high Mg/(Fe + Mg) ratio ( 0.75) and Al2O3 content (up to 9.6 wt.%), also suggesting T > 1050 °C and P > 10 kbar during peak metamorphism.

Coarse spinel (Spl-1) with irregular grain morphology and adjacent quartz grains are separated by thin films of Spr-1 and K-feldspar, suggesting that Spl-1 and quartz were in equilibrium before the stability of Spr-1 + quartz. This texture implies that the P–T conditions of the rock shifted from the stability field of spinel + quartz to sapphirine + quartz. Petrogenetic grid considerations based on available data from the FMAS system favour exhumation along a counterclockwise P–T trajectory. The irregular shape of the inclusion and chemistry of the inclusion minerals are markedly different from the matrix phases suggesting the possibility that the inclusion minerals could have equilibrated from cordierite-bearing silicate-melt pockets during the garnet growth at extreme UHT conditions.  相似文献   

46.
Geotechnical Properties of Low Calcium and High Calcium Fly Ash   总被引:1,自引:0,他引:1  
In this paper, a comparative study has been made for physical and engineering properties of low calcium and high calcium Indian fly ash. The grain size distribution of fly ash is independent of lime content. Fly ash particles of size >75 μm are mostly irregular in shape whereas finer fractions are spherical for low calcium fly ash. For high calcium fly ash, chemical and mineralogical differences have been observed for different size fractions. Compared to low calcium fly ash, optimum moisture content is low and maximum dry density is high for high calcium fly ash. Optimum moisture content is directly proportional and maximum dry density is inversely proportional to the carbon content. The mode and duration of curing have significant effect on strength and stress–strain behavior of compacted fly ash. The gain in strength with time for high calcium fly ash is very high compared to that of low calcium fly ash due to presence of reactive minerals and glassy phase.  相似文献   
47.
48.
Eddies and planetary waves are identified as one of the important factors that control the dynamics of the Arabian Sea. During 10–14 January 1990, Ignat, Paulyuchenkov (USSR ship) conducted an experiment in the central Arabian Sea and of late TOPEX/POSEIDON satellites collected data on sea surface height (SSH) anomalies of the Arabian Sea. These data sets give an opportunity to understand the characteristic of eddies and planetary waves in this region during winter. The geostrophic flow revealed three anticyclonic and two cyclonic eddies of diameters ranging from 75 to more than 150 km from surface to subsurface levels. Current speeds around different eddies were maximum at surface and varied from 9 cm/s to 25 cm/s (at the middle point between the center and periphery). The occurrence of eddies were further investigated with the TOPEX/POSEIDON altimetry for the years 1993–97. The analysis revealed multiple eddies of diameter 100 to 550 km occur every year with maximum number of eddies during 1997 and minimum during 1995. The calculated speed varied between 8–30 cm/s around various eddies. Longitude-Time plots showed annual Rossby waves generating at the eastern Arabian Sea and propagating westwards with a phase speed of ~ 10 cm/s along 16° N. Further, it was observed that these waves arrived in the study area by January. In addition, another positive anomaly of SSH was found generating at the western Arabian Sea simultaneously and extended up to the study region by April–June. Time series of SSH at selected locations along 16°N revealed many small-scale oscillations and their spatial variability. These oscillations were delineated using the FFT analysis. Other than the Rossby wave, the major components at the study region were 40–60 and 26–32 day oscillations. The implications of these long period waves associated with eddies are discussed.  相似文献   
49.
Western tropical Indian Ocean, Arabian Sea, and the equatorial Pacific are known as regions of intense bio-chemical-physical interactions: the Arabian Sea has the largest phytoplankton bloom with seasonal signal, while the equatorial Pacific bloom is perennial with quasi-permanent upwelling. Here, we studied three dimensional ocean thermodynamics comparing recent ocean observation with ocean general circulation model (OPYC) experiment combined with remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS). Using solar radiation parameterization representing observations that a higher abundance of chlorophyll increases absorption of solar irradiance and heating rate in the upper ocean, we showed that the mixed layer thickness decreases more than they would be under clear water conditions. These changes in the model mixed layer were consistent with Joint Global Ocean Flux Study (JGOFS) observations during the 1994-1995 Arabian Sea experiment and epi-fluorescence microscopy (EFM) on samples collected during Equatorial Pacific Ocean Climate Study (EPOCS) in November, 1988. In the Arabian Sea, as the chlorophyll concentrations peak in October (3 mg/m3) after the summer plankton bloom induced by coastal upwelling, the chlorophyll induced biological heating enhanced the sea surface temperature (SST) by as much as 0.6‡C and sub-layer temperature decreases and sub-layer thickness increases. In the equatorial Pacific, modest concentrations of chlorophyll less than 0.3 mg/m3 is enough to introduce a meridional differential heating, which results in reducing the equatorial mixed layer thickness to more than 20 m. The anomalous meridional tilting of the mixed layer bottom enhances off equatorial westward geostrophic currents. Consequently, the equatorial undercurrent transports more water from west to east. We proposed that these numerical model experiments with use of satellite andin situ ocean observations are consistent under three dimensional ocean circulation theory combined with solar radiation transfer process.  相似文献   
50.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号