首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
大气科学   1篇
地球物理   12篇
地质学   7篇
海洋学   13篇
天文学   28篇
自然地理   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   3篇
  2015年   4篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1997年   2篇
  1994年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
排序方式: 共有65条查询结果,搜索用时 0 毫秒
61.
A relationship between paths of the Kuroshio and Kuroshio Extension (KE) is investigated, using the satellite-derived altimetry dataset of 1993–2008. When the Kuroshio takes the nearshore nonlarge meander path or typical large meander path and resultantly goes through the deeper channel (about 2500 m) of the Izu-Ogasawara Ridge, the KE path adopts a relatively stable state with the two quasi-stationary meanders. On the other hand, when the Kuroshio takes the offshore nonlarge meander path and then passes over the shallower part of the Ridge (about 1000 m), the KE path tends to be convoluted, i.e., an unstable state.  相似文献   
62.
Abstract West Rota Volcano (WRV) is a recently discovered extinct submarine volcano in the southern Mariana Arc. It is large (25 km diameter base), shallow (up to 300 m below sealevel), and contains a large caldera (6 × 10 km, with up to 1 km relief). The WRV lies near the northern termination of a major NNE‐trending normal fault. This and a second, parallel fault just west of the volcano separate uplifted, thick frontal arc crust to the east from subsiding, thin back‐arc basin crust to the west. The WRV is distinct from other Mariana Arc volcanoes: (i) it consists of a lower, predominantly andesite section overlain by a bimodal rhyolite‐basalt layered sequence; (ii) andesitic rocks are locally intensely altered and mineralized; (iii) it has a large caldera; and (iv) WRV is built on a major fault. Submarine felsic calderas are common in the Izu and Kermadec Arcs but are otherwise unknown from the Marianas and other primitive, intraoceanic arcs. 40Ar–39Ar dating indicates that andesitic volcanism comprising the lower volcanic section occurred 0.33–0.55 my ago, whereas eruption of the upper rhyolites and basalts occurred 37–51 thousand years ago. Four sequences of rhyolite pyroclastics each are 20–75 m thick, unwelded and show reverse grading, indicating submarine eruption. The youngest unit consists of 1–2 m diameter spheroids of rhyolite pumice, interpreted as magmatic balloons, formed by relatively quiet effusion and inflation of rhyolite into the overlying seawater. Geochemical studies indicate that felsic magmas were generated by anatexis of amphibolite‐facies meta‐andesites, perhaps in the middle arc crust. The presence of a large felsic volcano and caldera in the southern Marianas might indicate interaction of large normal faults with a mid‐crustal magma body at depth, providing a way for viscous felsic melts to reach the surface.  相似文献   
63.
Carbon isotope fractionation between coexisting calcite and graphite (C ) has been studied in metamorphosed limestones from three thermal aureoles around Cretaceous granitic bodies (i.e., Tanohata, Tono, and Senmaya aureoles) in the Kitakami Mountains, Northeast Japan. C in each aureole decreases toward the granitic bodies, and becomes virtually uniform near the sillimanite isograd for metapelites, although calcite has variable isotopic ratios reflecting the original sedimentary compositions. The relationships indicate that isotopic equilibrium has been attained in metamorphosed limestone of sillimanite grade. Estimated C at the sillimanite isograd is similar in the Tanohata and Tono aureoles, but different in the Senmaya aureole with smaller carbon isotopic fractionations. From the temperature dependence of C and the negative dP/dT of andalusite–sillimanite equilibrium, we conclude that the sillimanite isograd in the Senmaya aureole was under higher temperature and lower pressure than in the other two localities. Temperatures at the sillimanite isograd are estimated by using existing calibrations of carbon isotopic exchange between calcite and graphite, whereas pressures are estimated from carbon isotopic temperatures and the andalusite–sillimanite equilibrium (Holdaway and Mukhopadhyay 1993a). Consistency of the P–T estimates is examined in the light of phase equilibria in the pelitic system. The estimated pressures at the sillimanite isograd are at about 2.1–2.7(±0.2) kbar for the Tanohata and Tono aureoles and less than 1 kbar for the Senmaya aureole, respectively. Geobarometry of sillimanite isograd in thermal aureoles indicates a marked difference in the depth of solidification of upper crustal granitoids: the Senmaya pluton has intruded and solidified at a very shallow level of less than 4 km whereas the Tanohata and Tono plutons are more deep-seated (ca. 8–10 km). The method can also be an effective tool in studying low-pressure type metamorphism in which geothermobarometry using garnet is not always applicable.Editorial responsibility: J. Hoefs  相似文献   
64.
The relationship between hard X-ray spectra and energetic electron spectra in solar X-ray bursts is investigated, and a simplified cross-section for bremsstrahlung which is applicable to the region of mildly relativistic energies is proposed. Using the proposed cross-section, we solve an integral equation to obtain the electron energy spectrum. The validity of the proposed cross-section is checked by comparing the spectrum calculated by the exact Bethe-Heitler formula. A good agreement between two calculated spectra is obtained up to 10 MeV energy with an accuracy of 20 %.  相似文献   
65.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号