首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   2篇
地球物理   6篇
地质学   39篇
海洋学   7篇
天文学   10篇
自然地理   15篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   1篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
71.
The quantification of geohazards and water resources in intraplate areas requires an integrated approach connecting monitoring, reconstruction and prediction of underlying processes. Intraplate rifts such as the Northwestern European rift system and coastal areas such as the Rhine–Meuse delta system are characterized by an interplay of climatic variations and neotectonics. The Netherlands Environmental Earth System Dynamics Initiative (NEESDI) addresses the interplay of lithosphere and surface processes through an integration of upper mantle and crustal scale studies with high-resolution analyses of the sedimentary record, geomorphology and hydrodynamic regime. Recent faulting imaged by seismic reflection data and trenching appears to exert a major control on uplift and subsidence patterns in the area, effecting coastal evolution and river dynamics in the Rhine–Meuse system.  相似文献   
72.
Middle Pleistocene uplift in the Eifel has been interpreted as the isostatic response of the lithosphere to a deep buoyant hot body. The spatial and temporal distribution of the uplift in the Ardennes–Rhenish Massif Region has recently been constrained by new data of river incision that have been compiled in this work. The uplift distribution can be reproduced using a thin elastic plate model and assuming that the uplift is created by a deep buoyant load, the distribution of which coincides with the weakening. Models incorporating a lithospheric weakening provide a better fit of the observed uplift than models with homogeneous flexural rigidity. These results are confirmed by numerical experiments using a depth-dependent elasto-plastic plate rheology, linking the flexural model with the thermo-mechanical structure of the lithosphere.  相似文献   
73.
Neotectonic deformation in the western and central part of the Pannonian Basin was investigated by means of surface and subsurface structural analyses, and geomorphologic observations. The applied methodology includes the study of outcrops, industrial seismic profiles, digital elevation models, topographic maps, and borehole data. Observations suggest that most of the neotectonic structures in the Pannonian Basin are related to the inverse reactivation of earlier faults formed mainly during the Miocene syn- and post-rift phases. Typical structures are folds, blind reverse faults, and transpressional strike-slip faults, although normal or oblique-normal faults are also present. These structures significantly controlled the evolution of landforms and the drainage pattern by inducing surface upwarping and river deflections. Our analyses do not support the postulated tectonic origin of some landforms, particularly that of the radial valley system in the western Pannonian Basin. The most important neotectonic strike-slip faults are trending to east-northeast and have dextral to sinistral kinematics in the south-western and central-eastern part of the studied area, respectively. The suggested along-strike change of kinematics within the same shear zones is in agreement with the fan-shaped recent stress trajectories and with the present-day motion of crustal blocks derived from GPS data.  相似文献   
74.
Stress is the most important parameter to understand basin dynamics and the evolution of hydrocarbon systems. The state of stress can be quantified by numerical geo-mechanical modelling techniques. These techniques require static elastic parameters of the rocks as input, while tectonic and gravitational forces are given as explicit boundary conditions to compute the local state of stress at different scales. We developed a technique to determine the density and elastic constants at seismic frequencies using full Zoeppritz inversion on angle-dependent seismic reflection data. The dynamic elastic parameters as obtained from seismic data differ from their static equivalents, which are necessary to determine the static state of stress. The dynamic elastic parameters are related to their static equivalents through experimentally obtained relations. In these rock-physics experiments, the static and dynamic elastic parameters are measured simultaneously during different external loading conditions. The experiments used here are all carried out in a tri-axial pressure machine under equal axial stresses. Then pre-stack seismic data analysis in combination with the relation between the static and dynamic elastic parameters, from the rock-physics experiments, provides the input parameters for geo-mechanical modelling.  相似文献   
75.
Plume–lithosphere interactions (PLI) have important consequences both for tectonic and mineralogical evolution of the lithosphere: for example, Archean metallogenic crises at the boundaries of the West African and Australian cratons coincide with postulated plume events. In continents, PLI are often located near boundaries between younger plates (e.g., orogenic) and older stable plates (e.g., cratons), which represent important geometrical, thermal and rheological barriers that interact with the emplacement of the plume head (e.g., Archean West Africa, East Africa, Pannonian–Carpathian system). The observable PLI signatures are conditioned by plume dynamics but also by lithosphere rheology and structure. We address the latter problem by considering a free-surface numerical model of PLI with two stratified elasto-viscous–plastic (EVP) lithospheric plates, one of which is older and thicker than another. The results show that: (1) plume head flattening is asymmetric, it is blocked from one side by the cold vertical boundary of the older plate, which leads to the mechanical decoupling of the crust from the mantle lithosphere, and to localized faulting at the cratonic margin; (2) the return flow from the plume head results in sub-vertical down-thrusting (delamination) of the lithosphere at the margin, producing sharp vertical cold boundary down to the 400 km depth; (3) plume head flattening and migration towards the younger plate results in concurrent surface extension above the centre of the plume and in compression (pushing), down-thrusting and magmatic events at the cratonic margin (down-thrusting is also produced at the opposite border of the younger plate); these processes may result in continental growth at the “craton side”; (4) topographic signatures of PLI show basin-scale uplifts and subsidences preferentially located at cratonic margins. Negative Rayleigh–Taylor instabilities in the lithosphere above the plume head provide a mechanism for crustal delamination. Inferred consequences of PLI near intra-continental plate boundaries, such as faulting at cratonic edges and enhanced magmatic activity, could explain plume-related metallogenic crises, as suggested for West Africa and Australia.  相似文献   
76.
Lateral variations in lithospheric strength have been adopted often in flexural modeling (both 2D and 3D) to better fit the observed basement deflections, typically supported by gravity data. This approach provides essentially a “snap-shot” of the role of lithosphere strength in determining the present day geometry.In contrast, we investigate and quantify the effects of a lateral change in lithospheric strength on the evolution of the foredeep in front of an advancing orogen. Transitions in lithospheric strength are common in the foreland of orogens and show large variations in the width of the transition zone and the strength difference. Former passive margins, for instance, will display strength changes distributed over several tens to hundreds of kilometers. Other transitions may originate from juxtaposition or accretion of pieces of lithosphere with different properties and may be characterized by a much smaller width than former passive margins.In our modeling, a constant load, representing an advancing orogenic belt, is displaced towards and across a transition from a weak to a strong plate in a 2D elastic thin plate model. The effect of different transition widths and strength contrasts on foredeep geometry and bending stress is investigated. Interference of flexural wavelengths across the transition affects foredeep geometry by causing rapid basin widening, oscillation of the bulge and volume increase. The bending stresses are found to concentrate and amplify around the strength transition. Large transition gradients, i.e. large strength contrast or small transition width, cause the highest rates of change.Basin widening caused by the orogenic load advancing towards the transition between the East European Craton and the Moesian Platform, appears to control the Sarmatian transgression over the East Carpathian foreland in Romania.  相似文献   
77.
We have constructed finite element models at various stages of passive margin evolution, in which we have incorporated the system of forces acting on the margin, depth-dependent rheological properties and lateral variations across the margin. We have studied the interrelations between age-dependent forces, geometry and rheology, to decipher their net effect on the state of stress at passive margins. Lithospheric flexure induced by sediment loading dominates the state of stress at passive margins. This study has shown that if after a short evolution of the margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favourable for transformation into an active margin. Although much geological evidence is available in support of the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号