首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6849篇
  免费   387篇
  国内免费   37篇
测绘学   173篇
大气科学   730篇
地球物理   1775篇
地质学   2770篇
海洋学   357篇
天文学   1144篇
综合类   28篇
自然地理   296篇
  2023年   32篇
  2022年   47篇
  2021年   123篇
  2020年   144篇
  2019年   109篇
  2018年   318篇
  2017年   323篇
  2016年   424篇
  2015年   310篇
  2014年   367篇
  2013年   527篇
  2012年   411篇
  2011年   389篇
  2010年   362篇
  2009年   389篇
  2008年   263篇
  2007年   210篇
  2006年   200篇
  2005年   164篇
  2004年   179篇
  2003年   133篇
  2002年   130篇
  2001年   118篇
  2000年   101篇
  1999年   75篇
  1998年   84篇
  1997年   111篇
  1996年   67篇
  1995年   83篇
  1994年   77篇
  1993年   52篇
  1992年   33篇
  1991年   44篇
  1990年   68篇
  1989年   32篇
  1988年   26篇
  1987年   52篇
  1986年   33篇
  1985年   40篇
  1984年   41篇
  1983年   39篇
  1982年   41篇
  1981年   45篇
  1980年   26篇
  1979年   32篇
  1978年   26篇
  1977年   29篇
  1975年   21篇
  1974年   22篇
  1973年   24篇
排序方式: 共有7273条查询结果,搜索用时 15 毫秒
911.
We assess the likely changes in climate extremes under enhanced greenhouse gases over the southern extratropics, with emphasis in southern South America and sub-Antarctic seas, through the analysis of extreme indices measured from models participating in the IPCC 4th Assessment Report. We discuss how the anthropogenic climate change under A1B scenario influences both the patterns of mean change of extreme indices and the likelihood of occurrence of severe extreme indices. The likelihood of occurrence of a year with a large number of days with “warm” minimum temperatures is estimated to increase by a factor of 4 by the end of this century over most of the southern extratropics. By that time, the risk of “severe” precipitation intensity is projected to rise in most areas with the exception of the subtropical anticyclones, which experience particularly strong drying. Over the Southern Ocean this likelihood has increased to over 60%. Corresponding estimates of the changing likelihood for very long dry spells show a banded structure with positive ratios to the north of about 50° S and negative ratios in the sub Antarctic seas. In southern South America this risk about doubled between present and future climates. Then, we explore if the Southern Annular Mode influences the occurrence of severe extreme indices during the period 2070–2099. Its positive phase inhibits the extremely warm minimum temperatures in the Southern Ocean, with the exception of the eastern Bellingshausen Sea, and favors severe frost days to the north of the Ross Sea. Temperature indices show very little change induced by the SAM to the north of 50° S. Severe dry spells are inhibited during the positive phase along the sub Antarctic seas, while the mid-latitudes, including most of Patagonia, show the opposite behaviour. The Southern Ocean reveals a non-uniform distribution with both increases and decreases in the occurrence of heavier precipitation during positive SAM.  相似文献   
912.
We analyze the processes responsible for the generation and evolution of sea-surface temperature anomalies observed in the Southern Ocean during a decade based on a 2D diagnostic mixed-layer model in which geostrophic advection is prescribed from altimetry. Anomalous air–sea heat flux is the dominant term of the heat budget over most of the domain, while anomalous Ekman heat fluxes account for 20–40% of the variance in the latitude band 40°?60°S. In the ACC pathway, lateral fluxes of heat associated with anomalous geostrophic currents are a major contributor, dominating downstream of several topographic features, reflecting the influence of eddies and frontal migrations. A significant fraction of the variability of large-scale SST anomalies is correlated with either ENSO or the SAM, each mode contributing roughly equally. The relation between the heat budget terms and these climate modes is investigated, showing in particular that anomalous Ekman and air–sea heat fluxes have a co-operating effect (with regional exceptions), hence the large SST response associated with each mode. It is further shown that ENSO- or SAM-locked anomalous geostrophic currents generate substantial heat fluxes in all three basins with magnitude comparable with that of atmospheric forcings for ENSO, and smaller for the SAM except for limited areas. ENSO-locked forcings generate SST anomalies along the ACC pathway, and advection by mean flows is found to be a non-negligible contribution to the heat budget, exhibiting a wavenumber two zonal structure, characteristic of the Antarctic Circumpolar Wave. By contrast SAM-related forcings are predominantly zonally uniform along the ACC, hence smaller zonal SST gradients and a lesser role of mean advection, except in the SouthWest Atlantic. While modeled SST anomalies are significantly correlated with observations over most of the Southern Ocean, the analysis of the data-model discrepancies suggests that vertical ocean physics may play a significant role in the nonseasonal heat budget, especially in some key regions for mode water formation.  相似文献   
913.
A wind-tunnel experiment was designed and carried out to study the effect of a surface roughness transition on subfilter-scale (SFS) physics in a turbulent boundary layer. Specifically, subfilter-scale stresses are evaluated that require parameterizations and are key to improving the accuracy of large-eddy simulations of the atmospheric boundary layer. The surface transition considered in this study consists of a sharp change from a rough, wire-mesh covered surface to a smooth surface. The resulting magnitude jump in aerodynamic roughnesses, M = ln(z 01/z 02), where z 01 and z 02 are the upwind and downwind aerodynamic surface roughnesses respectively, is similar to that of past experimental studies in the atmospheric boundary layer. The two-dimensional velocity fields used in this study are measured using particle image velocimetry and are acquired at several positions downwind of the roughness transition as well as over a homogeneous smooth surface. Results show that the SFS stress, resolved strain rate and SFS transfer rate of resolved kinetic energy are dependent on the position within the boundary layer relative to the surface roughness transition. A mismatch is found in the downwind trend of the SFS stress and resolved strain rate with distance from the transition. This difference of behaviour may not be captured by some eddy-viscosity type models that parameterize the SFS stress tensor as proportional to the resolved strain rate tensor. These results can be used as a benchmark to test the ability of existing and new SFS models to capture the spatial variability SFS physics associated with surface roughness heterogeneities.  相似文献   
914.
We present an analysis of a regional simulation of present-day climate (1981–1990) over southern South America. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. We evaluate the capability of the model in simulating the observed climate with emphasis on low-level circulation patterns and surface variables, such as precipitation and surface air mean, maximum and minimum temperatures. The regional model performance was evaluated in terms of seasonal means, seasonal cycles, interannual variability and extreme events. Overall, the regional model is able to capture the main features of the observed mean surface climate over South America, its seasonal evolution and the regional detail due to topographic forcing. The observed regional patterns of surface air temperatures (mean, maxima and minima) are well reproduced. Biases are mostly within 3°C, temperature being overestimated over central Argentina and underestimated in mountainous regions during all seasons. Biases in northeastern Argentina and southeastern Brazil are positive during austral spring season and negative in other seasons. In general, maximum temperatures are better represented than minimum temperatures. Warm bias is larger during austral summer for maximum temperature and during austral winter for minimum temperature, mainly over central Argentina. The broad spatial pattern of precipitation and its seasonal evolution are well captured; however, the regional model overestimates the precipitation over the Andes region in all seasons and in southern Brazil during summer. Precipitation amounts are underestimated over the La Plata basin from fall to spring. Extremes of precipitation are better reproduced by the regional model compared with the driving model. Interannual variability is well reproduced too, but strongly regulated by boundary conditions, particularly during summer months. Overall, taking into account the quality of the simulation, we can conclude that the regional model is capable in reproducing the main regional patterns and seasonal cycle of surface variables. The present reference simulation constitutes the basis to examine the climate change simulations resulting from the A2 and B2 forcing scenarios which are being reported in a separate study.  相似文献   
915.
Sensitivity studies with regional climate models are often performed on the basis of a few simulations for which the difference is analysed and the statistical significance is often taken for granted. In this study we present some simple measures of the confidence limits for these types of experiments by analysing the internal variability of a regional climate model run over West Africa. Two 1-year long simulations, differing only in their initial conditions, are compared. The difference between the two runs gives a measure of the internal variability of the model and an indication of which timescales are reliable for analysis. The results are analysed for a range of timescales and spatial scales, and quantitative measures of the confidence limits for regional model simulations are diagnosed for a selection of study areas for rainfall, low level temperature and wind. As the averaging period or spatial scale is increased, the signal due to internal variability gets smaller and confidence in the simulations increases. This occurs more rapidly for variations in precipitation, which appear essentially random, than for dynamical variables, which show some organisation on larger scales.  相似文献   
916.
We outline our experience in organizing the first edition of the Workshop on Matter, Astrophysics, Gravitation, Ions and Cosmology, held in virtual and in-person format, denominated MAGIC23, held from 6 to 10 March, 2023, in Praia do Rosa, Santa Catarina, Brazil. The event aimed to bring together leading academic scientists, professors, students, and research scholars for exchanging experiences and discuss the most recent innovations, trends, practical challenges, and experimental and theoretical solutions adopted in the investigation fields within the scope of the meeting. The workshop offered to the participants a platform for scientific and academic projects, partnerships, and presentation of high-quality research contributions describing original and unpublished results on topics related to matter, astrophysics, gravitation, ions, and cosmology.  相似文献   
917.
Inferences are made about the relationship that existed between the Ushnus, pyramid-shaped, terraced structures used by the Incas in the most important ceremonies of the Tawantinsuyo, and Inka Astronomy. We draw attention to Ayni, Kawsaypacha, Duality, and Tinkuy principles, multidimensional codes of conduct and wisdom that are at the root of the Andean cosmovision and on their perception of the world and the Cosmos. These principles, examined as postulates, allow to elaborate axiomatic propositions to identify the Ushnus with ancient Astronomy practices. In a complementary statement, starting from a bi-conditional proposition, we may infer through reciprocal corollaries that the Inka earliest roots to a holistic learning and educational ambient in the Tawantinsuyo was not elitist, instead it was based on a epistemological construct that differs from the corresponding Western educational ambients. An epistemological and cognitive approach allows to identify an ancient elaborate process of knowledge construction, based on the four fundamental principles, corresponding to different levels of assimilation and comprehension. As a complementary aspect, we identify some of the most preserved Ushnus of the Inka “Empire.” Then we complement this contribution with a broader interpretation for the Ushnus.  相似文献   
918.
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).  相似文献   
919.
We study a massive cosmic strings with BII symmetries cosmological models in two contexts. The first of them is the standard one with a barotropic equation of state. In the second one we explore the possibility of taking into account variable “constants” (G and Λ). Both models are studied under the self-similar hypothesis. We put special emphasis in calculating the numerical values for the equations of state. We find that for ω∈(0,1], G, is a growing time function while Λ, behaves as positive decreasing time function. If ω=0, both “constants”, G and Λ, behave as true constants.  相似文献   
920.
Institutions such as NASA, ESA or JAXA find solutions to distribute data from their missions to the scientific community, and their long term archives. This is a complex problem, as it includes a vast amount of data, several geographically distributed archives, heterogeneous architectures with heterogeneous networks, and users spread around the world. We propose a novel architecture that solves this problem aiming to fulfill the requirements of the final user. Our architecture is a modular system that provides a highly efficient parallel multiprotocol download engine, using a publisher/subscriber policy which helps the final user to obtain data of interest transparently. We have evaluated a first prototype, in collaboration with the ESAC centre in Villafranca del Castillo (Spain) that shows a high scalability and performance, opening a wide spectrum of opportunities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号