首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   3篇
测绘学   3篇
大气科学   13篇
地球物理   35篇
地质学   25篇
海洋学   21篇
天文学   6篇
自然地理   1篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   7篇
  2007年   3篇
  2006年   4篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  1996年   2篇
  1983年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
101.

In engineering practice, the liquefaction potential of a sandy soil is usually evaluated with a semi-empirical, stress-based approach computing a factor of safety in free field conditions, defined as the ratio between the liquefaction resistance (capacity) and the seismic demand. By so doing, an estimate of liquefaction potential is obtained, but nothing is known on the pore pressure increments (often expressed in the form of normalized pore pressure ratio ru) generated by the seismic action when the safety factor is higher than 1. Even though ru can be estimated using complex numerical analyses, it would be extremely useful to have a simplified procedure to estimate them consistent with the stress-based approach adopted to check the safety conditions. This paper proposes such a procedure with reference to both saturated and unsaturated soils, considering the latter as soils for which partial saturation has been artificially generated with some ground improvement technology to increase cyclic strength and thus tackle liquefaction risk. A simple relationship between the liquefaction free field safety factor FS, and ru(Sr) is introduced, that generalizes a previous expression proposed by Chiaradonna and Flora (Geotech Lett, 2020. https://doi.org/10.1680/jgele.19.00032) for saturated soils. The new procedure has been successfully verified against some experimental data, coming from laboratory constant amplitude cyclic tests and from centrifuge tests with irregular acceleration time histories for soils having different gradings and densities.

  相似文献   
102.
Al Huwaysah 010 is an ungrouped achondrite meteorite, recently referred to as a brachinite-like meteorite. This meteorite, showing a fine-grained assemblage of low-Ca pyroxene and opaque phases, is strongly reduced in comparison to other reduced brachinites. The occurrence of some tiny plates of graphite and oldhamite in this meteorite suggests that a partial melt residue has experienced a further reduction process. Olivine, the most abundant phase, is compositionally homogeneous (Fo83.3) as well as the clinopyroxene (En45.5Fs10.8Wo43.7) and the plagioclase (Ab69.5). Orthopyroxene (En85.4Fs13.9Wo0.7) also occurs but only in a fine intergrowth. Other accessory phases are Fe metal grains (Ni-free or Cr-bearing Fe-Ni alloy), troilite, chlorapatite, pentlandite (as inclusions in chromite). The sample shows two different closure temperatures: the highest (≈900°C) is determined via the olivine–chromite intercrystalline geothermometer and the lowest temperature (≈520°C) is determined via the pyroxene-based intracrystalline geothermometer. These temperatures may represent, respectively, the closure temperature associated with the formation and a subsequent impact event excavating the sample from the parental body. The visible to near-infrared (VNIR) reflectance spectra of Al Huwaysah 010 exhibit low reflectance, consistent with the presence of darkening components, and weak absorptions indicative of olivine and pyroxene. Comparing the spectral parameters of Al Huwaysah 010 to potential parent bodies characterized by olivine–pyroxene mineralogy, we find that it falls within the field previously attributed to the SIII type asteroids. These results lead us to classify the Al Huwaysah 010 meteorite as the most reduced brachinite, whose VNIR spectral features show strong affinities with those of SIII asteroids.  相似文献   
103.
Forest pest populations can fluctuate dramatically in relation to climate and density-dependent factors. Although the distributional range of the pine processionary moth Thaumetopoea pityocampa (Lepidoptera Notodontidae) appears to be expanding northward and upslope with climate warming, the relative importance of climate and endogenous, density-dependent factors has not been clearly documented. We analyzed the population dynamics of the moth using long-term data from two provinces in the Southern Alps (Trento: 1990–2009, Bolzano/Bozen: 1975–2011) to evaluate the relative importance of climate and density-dependent factors as regional drivers. Both summer temperatures and rainfall significantly affected population growth rate, with different outcomes depending on the local conditions. Although previous studies indicated that low winter temperatures have negative effects on insect performance, our analyses did not show any negative effect on the population dynamics. A negative density dependent feedback with a 1-year lag emerged as the most important factor driving the population dynamics in both regions. Potential mechanisms explaining the observed negative density feedback include deterioration of host quality, increased mortality caused by pathogens, and increase of prolonged diapause as an adaptive mechanism to escape adverse conditions.  相似文献   
104.
Acta Geotechnica - During recent seismic events, such as 2010 Darfield and 2016 Ecuador earthquakes, widespread liquefaction has been observed in sand deposits with silt content. Nevertheless, the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号